CITES-2011, 3 июля, Томск

Введение в практический курс «Моделирование мезомасштабных атмосферных процессов на основе современных параллельных вычислительных технологий»

Степаненко В.М. Московский государственный университет (Научно-исследовательский вычислительный центр, Географический факультет)

План лекции

- Общий план практических занятий CITES-2011
- Мезомасштабные атмосферные процессы
- Мезомасштабная атмосферная модель NH3D_MPI
- Параллельная реализация модели
- Бризовые циркуляции
- Постановка задачи для практических занятий

План практических занятий CITES-2011

- Численные методы расчета регионального переноса примеси (Фадеев Р.Ю.; 6-7 июля)
- Моделирование атмосферных мезометеорологических процессов на основе современных параллельных вычислительных технологий (Степаненко В.М.; 4-5 июля)
 - Вычислительные технологии оперативного регионального прогноза погоды (Ривин Г.С.; 6-7 июля)

Масштабы атмосферных процессов

http://fbakhtiar.com/references/METEOROL.HTM

Динамический критерий разделения атмосферных масштабов

Введем масштабы:

L—горизонтальный масштаб, H—вертикальный масштаб, U—масштаб горизонтальной скорости, W—масштаб вертикальной скорости

Геострофический баланс выполняется, если

$$adv/Cor \sim \frac{U^2/L}{lU} < \alpha = 10^{-1}$$
 $L > \alpha^{-1} \frac{U}{l} \sim \alpha^{-1} 10^5 \, M = 1000 \, \kappa M$

Гидростатический баланс выполняется, если

$$adv/grav \sim \frac{U^2 H}{gL^2} < \alpha = 10^{-1} \qquad \qquad L > U \left(\frac{H}{g \alpha}\right)^{1/2} \sim 10^3 \, \text{M} = 1 \, \text{KM}$$

Динамический критерий разделения атмосферных масштабов

	Геострофический баланс	Гидростатический баланс
Макромасштаб L > 1000 км	+	+
Мезомасштаб 1 км < L < 1000 км	_	+/-
Микромасштаб L < 1 км	_	_

Иерархия атмосферных моделей

ГЛОБАЛЬНЫЕ МОДЕЛИ 🔲 разрешение 10-100 км (GFDL, ECHAM, HadCM, INM RAS, ... - ГИДРОСТАТИКА) Циркуляции планетарного и синоптического масштабов: пассаты, муссоны, циклоны и антициклоны, ...

РЕГИОНАЛЬНЫЕ МОДЕЛИ разрешение 1-10 км (MM5, WRF, Meso-NH, NH3D, ... - <u>НЕГИДРОСТАТИКА</u>) Циркуляции масштабов мезо-α, β, γ : Бризы, фены, бора, линии шквалов, МКК, ...

МОДЕЛИ КРУПНЫХ ВИХРЕЙ разрешение 10-100 м Циркуляции масштаба атмосферного пограничного слоя - термики, валики, ячейки, ...

Уравнения мезомасштабной модели NH3D в σ-системе координат

Уравнение в *z*-системе координат

$$\frac{du}{dt} = -\frac{1}{\rho} + lv + D_u + R_u$$

Введем σ, фоновые профили геопотенциала и температуры

$$\sigma = \frac{p - p_t}{p_s - p_t} \qquad p_* = p_s - p_t \qquad f = f_s(p) + f', f = \phi, \theta$$

Используя соотношения

$$\frac{du}{dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \dot{\sigma} \frac{\partial u}{\partial \sigma}$$

$$-\frac{1}{\rho}\frac{\partial p}{\partial x} = -\frac{\partial \phi'}{\partial x} + \frac{\partial \phi'}{\partial \sigma}\frac{\sigma}{p_*}\frac{\partial p_*}{\partial x}$$

и преобразованное уравнение неразрывности

$$\frac{\partial p_*}{\partial t} + \frac{\partial u p_*}{\partial x} + \frac{\partial v p_*}{\partial y} + \frac{\partial \dot{\sigma} p_*}{\partial \sigma} = 0$$

получаем

$$\frac{\partial p_* u}{\partial t} + \frac{\partial u^2 p_*}{\partial x} + \frac{\partial v p_* u}{\partial y} + \frac{\partial \dot{\sigma} p_* u}{\partial \sigma} = -p_* \frac{\partial \phi'}{\partial x} + \frac{\partial \phi'}{\partial \sigma} \sigma \frac{\partial p_*}{\partial x} + lp_* v + p_* (D_u + R_u)$$
AHAJOFUHHO, 2-e УРАВНЕНИЕ ДВИЖЕНИЯ ПРИНИМАЕТ ВИД
$$\frac{\partial p_* v}{\partial t} + \frac{\partial u p_* v}{\partial x} + \frac{\partial v^2 p_*}{\partial y} + \frac{\partial \dot{\sigma} p_* v}{\partial \sigma} = -p_* \frac{\partial \phi'}{\partial y} + \frac{\partial \phi'}{\partial \sigma} \sigma \frac{\partial p_*}{\partial y} - lp_* u + p_* (D_v + R_v)$$

$$\frac{\mathbf{Aaaee, yuutbibas}}{\partial t} \quad \frac{\partial}{\partial z} \simeq -S \frac{\partial}{\partial \sigma} \quad \mathbf{u} \quad \frac{1}{\rho} = -\frac{1}{p_*} \frac{\partial \phi'}{\partial \sigma} \quad \mathbf{umeem}$$

$$\frac{\partial p_* \tilde{w}}{\partial t} + \frac{\partial u p_* \tilde{w}}{\partial x} + \frac{\partial v p_* \tilde{w}}{\partial y} + \frac{\partial \dot{\sigma} p_* \tilde{w}}{\partial \sigma} = -p_* S \frac{\partial \phi'}{\partial \sigma} + p_* \tilde{w} \frac{\theta'}{\theta_s} + p_* (D_w + R_w)$$

Уравнения для скаляров

$$\frac{\partial p_* \theta'}{\partial t} + \frac{\partial u p_* \theta'}{\partial x} + \frac{\partial v p_* \theta'}{\partial y} + \frac{\partial \dot{\sigma} p_* \theta'}{\partial \sigma} = p_* \tilde{w} S \frac{\partial \theta_s}{\partial \sigma} - \frac{p_*}{\rho c_p} S \left(\frac{p_0}{p}\right)^{\kappa} \frac{\partial (Q_s + Q_l)}{\partial \sigma} + p_* (D_w + R_w)$$

$$\frac{\partial p_* q_v}{\partial t} + \frac{\partial u p_* q_v}{\partial x} + \frac{\partial v p_* q_v}{\partial y} + \frac{\partial \dot{\sigma} p_* q_v}{\partial \sigma} = p_* (D_{q_v} + R_{q_v})$$

Эллиптическое уравнение для возмущения геопотенциала выводится путем дифференцирования по х, у и о трех уравнений движения и суммирования результатов:

$$\frac{\partial}{\partial x} \left(\frac{u - ypaвнениe}{p_*} \right) + \frac{\partial}{\partial y} \left(\frac{v - ypaвненue}{p_*} \right) + \frac{\partial}{\partial \sigma} \left(\frac{\tilde{w} - ypaвненue}{p_*} \right)$$
$$\frac{\partial^2 \phi'}{\partial x^2} + \frac{\partial^2 \phi'}{\partial y^2} + \frac{\partial}{\partial \sigma} S \frac{\partial \phi'}{\partial \sigma} = \Phi$$

Граничные условия

На верхней границе $\sigma=0$

$$\frac{\partial f}{\partial \sigma} = 0, f = u, v, \theta', \tilde{w}, q_v$$

На нижней границе $\sigma=1$

сопряжение с подстилающей поверхностью

через потоки тепла и импульса

На боковых границах – условия излучения

 $\frac{\partial f}{\partial t} + C_x \frac{\partial f}{\partial x} + C_y \frac{\partial f}{\partial y} = 0,$ $C_x = \frac{-\frac{\partial f}{\partial t} \frac{\partial f}{\partial x}}{\left((\partial f/\partial x)^2 + (\partial f/\partial y)^2\right)}, C_y = \frac{-\frac{\partial f}{\partial t} \frac{\partial f}{\partial y}}{\left((\partial f/\partial x)^2 + (\partial f/\partial y)^2\right)}$

или однородное условие Неймана $\frac{\partial f}{\partial n} = 0$

Конечно-разностная схема

- Центральные разности для пространственных производных
- Схема "чехарда" по времени

$$\frac{f^{j+1} - f^{j-1}}{2\Delta t} = F(f^{j})$$

- Вычислительная мода подавляется фильтром Аселина
- Короткие паразитные волны подавляются пространственным фильтром 4-го порядка
- Эллиптическое уравнение решается преобразованием Фурье и обращением трехдиагнольных матриц методом прогонки

Параметризации физических процессов

РЕАЛИЗАЦИЯ МОДЕЛИ НА МНОГОПРОЦЕССОРНОЙ СИСТЕМЕ (Межпроцессорные пересылки данных при решении уравнений по явной схеме)

плотность вычислений на единицу данных производительность ограничена скоростью работы памяти и обменной сети

Транспонирование массивов при решении эллиптического уравнения

Результаты трассировки модели NH3D_MPI (16 процессоров)

🚉 Intel T 🚉 File	Intel Trace Analyzer - [1: /home/users/intel_16/nh3dmpi/nh3d.out.stf]																								
View Charts Navigate Advanced Layout																									
	31.	18 s	31.2	0 5	31.22	3 E	31.24	5	31.26 .	,	31.28 F	3.	1.30 s	31	.32 5	31.	.34 в	31.3	іб в	31.38 в 31.42 31.40 в	в 31.44 в	31.46 в	31.48 в	31.50 s	-
1 31,20* 31,34* 31,32* 31,32* 31,40* 31,44*																									
	PO	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	Sum	Mean	StdDe					_ ,	40=-3
PO																								3	06=-3
F0																		•••						2	72=-3
P1																								2	38e-3
P2																								1	.70=-3
																								1	.36=-3
P3		••••				••••							••••	••••	••••			•••						1	.02=-3
P4																								-	68∈-3 34=-0
		31.16	3 607, 3	1.513 6	678: 0.3	50 071			9	зес.				,	All_Prov	cesses				Major Fu	Inction Groups		Ta	ıg l	Filter
6	C)				2	1		ł		X											RU 2	- 🖂 🛱 📶 🛛	() 17:2 13.05.2	20 2011

Ускорение и эффективность модели (результаты получены А.Тепловым)

Скорость шагов в минуту число шагов Steps per Minute Кол-во процессоров

Эффективность вычислений

Эффективность = ускорение / количество процессов

Бризы Схема бризовой циркуляции

Виды бризовых циркуляций

- Морские, озерные бризы
- Бризы на крупных реках
- Ледовые бризы

- Бризы на границе снежного покрова
- Бризы на границе лес-поле
- Городские бризы

Параметры энергетической
диагностики бризовой циркуляции
$$E_k = \frac{1}{2g} \int_{s} \int_{0}^{1} p_* (u^2 + v^2 + w^2) d\sigma dS'$$
Кинетическая энергия $E_k = \frac{c_p}{g} \int_{s} \int_{0}^{1} p_* \left(\frac{p}{p_0}\right)^{\kappa} \theta' d\sigma dS' = \frac{c_p}{g} \int_{s} \int_{0}^{1} p_* T' d\sigma dS'$ Внутренняя
энергия $E_a = -\frac{1}{2} \frac{R_d}{gp_0^{\kappa}} \int_{s} \int_{0}^{1} p^{\kappa-1} (p_* \theta')^2 \left(\frac{\partial \theta_s}{\partial \sigma}\right)^{-1} d\sigma dS'$ Доступная
потенциальная
энергия

$$A_{b} = \int_{S} \int_{0}^{1} \left(wp_{*} \frac{\theta'}{\theta_{s}} \right) d\sigma dS'$$

Генерация кинетической энергии силой плавучести

$$A_{s} = \int_{S} \int_{0}^{1} \frac{c_{p} wp}{R_{d} \theta_{s}} \frac{\partial \theta_{s}}{\partial \sigma} d\sigma dS'$$

Источник внутренней энергии за счет вертикальной адвекции фоновой температуры

Факторы бризовой циркуляции

Crosman and Horel, 2010

Образование вихря при конвергенции бризового течения

Мезомасштабные потоки тепла Для ячейки глобальной климатической модели (п*10 км – 100 км) мезомасштабные процессы являются подсеточными и формируют подсеточные потоки тепла, влаги и импульса

Мезомасштабный поток тепла (Baldi et al., 2005)

$$H = c_{p} \rho \overline{w' \theta'},$$

$$LE = L \rho \overline{w' q'},$$

$$f' = f - \overline{f},$$

$$f = w, \theta, q$$

$$\overline{f} = \frac{1}{S} \int_{S} f dS'.$$

Задание 1. Моделирование динамики морского и берегового бриза Распределение суши и моря в двух экспериментах

Задание 2.

Моделирование динамики ледового бриза Задается распределение льда и открытой воды

Задание 3. Моделирование мезомасштабных циркуляций над гидрологически неоднородной поверхностью

- Размеры конечноразностной сетки модели 61x61x31
- Шаг сетки по осям х и у — 1.8 км
- Шаг по времени 2 с
- Координаты центра расчетной области: широта 62 с.ш., долгота 75 в.д.
- Начальный момент времени 06:00 1 июля
- Начальное поле ветра соответствует почти полному покою атмосферы
- Фазовые переходы влаги в атмосфере не учитываются

Анализ результатов численных экспериментов

- Анализа основных качественных закономерностей пространственно-временной динамики бриза
- Оценка роли фонового (геострофического) ветра
- Энергетическая диагностика бризовой циркуляции
- Оценка механизмов формированипя завихренности (величин слагаемых уравнения завихренности)
- Расчет профилей мезомасштабных потоков тепла и влаги

Реализация численных экспериментов (www.parallel.ru)

Суперкомпьютерный комплекс "Ломоносов"

Общий вид комплекса:

- Пиковая производительность 510 Тфлопс (с GPU 1.3 Пфлопс)
- Производительность на Linpack 78%
- Число процессоров/ядер 10 260/44 000
- Процессор основных виычислительных узлов Intel® Xeon X5570 Nehalem

СПАСИБО! До встречи на практических занятиях!

Задание 2. Моделирование динамики ледового бриза

Распределение льда и открытой воды в

двух экспериментах

Бриз на границе "лес-поле" (Avissar, 2005)

