Mesoscale modelling of cold-air outbreaks in the Arctic: the effect of spatial resolution and numerical filtering on ocean-atmosphere energy exchange

Dmitry Chechin¹ Christof Lüpkes² Irina Repina¹

- ¹ A.M. Obukhov Institute for Atmospheric Physics RAS, Moscow, Russia
- ² Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

Motivation and goals

Problem: GCMs and RCMs – large bias with observations in the Arctic, especially with regards to surface turbulent fluxes (Chapman and Walsh 2007; Tjernström et al 2005)

Possible reason: coarse spatial resolution

- Large horizontal gradients in the Arctic MIZ
- Off-ice flow typical meteorological regime for MIZ

Questions addressed in the research:

- 1. Does horizontal resolution, used in GCMs and RCMs, affect surface fluxes during off-ice flows?
- 2. If YES, then HOW MUCH?

Method: mesoscale modelling with different spatial resolution

Model NH3D validation against observations

4th of March 1993, REFLEX II campaign

Mesoscale circulation

Geostrophic wind speed: $U_{geos} = -3.1$; $V_{geos} = -4.7$

Effect of horizontal resolution

Different geostrophic wind speed

The difference of results 60km resolution run and 5km resolution run for heat flux and momentum flux in % from 5km run:

Effect of horizontal numerical smoothing

Forth order horizontal diffusion is typically used in regional models as a numerical filter in order to suppress numerical noise:

$$\frac{\partial \psi}{\partial t} = \kappa \nabla^2 \psi$$

where κ is diffusion coefficient

1

Heat flux is 5-15% underestimated at coarse resolution

Momentum flux is 5-20% underestimated at coarse resolution

2

The effect of coarse resolution on fluxes is largest:

- at moderate geostrophic wind speed: <10 m/s
- when surface temperature difference T_{water}-T_{ice} is large
- When the ice edge is sharp

3

Reasons for flux underestimation at coarse resolution:

- 1. Mesoscale circulation is not well resolved
- 2. BL modification close to the ice edge is not resolved

4

Horizontal numerical filtering has an effect on surface fluxes at coarse resolution. The use of a typical for regional climate models coefficient of diffusion leads up to 5% underestimation of surface fluxes

Thank you!