Bioclimatic indexes for environmental applications

Tkachuk S.V.^{1,2}, Rubinshtein K.G.¹

¹Hydrometeorological Research Centre of Russian Federation ²A.M. Obukhov Institute of Atmospheric Physics (RAS)

Year	Index	Author(s)	
1905	Wet-bulb temperature (T _w)	Haldane ¹⁹⁾	
1916	Katathermometer	Hill et al.47)	
1923	Effective temperature (ET)	Houghton & Yaglou ²³⁾	
1929	Equivalent temperature (T _{eq})	Dufton ⁴⁸⁾	
1932	Corrected effective temperature (CET)	Vernon & Warner ²⁴⁾	
1937	Operative temperature (OpT)	Winslow et al.49)	
1945	Thermal acceptance ratio (TAR)	Ionides et al.50)	
1945	Index of physiological effect (E _p)	Robinson et al. ⁵¹⁾	
1946	Corrected effective temperature (CET)	Bedford ⁵²⁾	
1947	Predicted 4-h sweat rate (P4SR)	McArdel et al.53)	
1948	Resultant temperature (RT)	Missenard et al.54)	
1950	Craig index (I)	Craig ₅₅₎	
1955	Heat stress index (HIS)	Belding & Hatch ⁷⁾	
1957	Wet-bulg globe temperature (WBGT)	Yaglou & Minard ²⁵⁾	
1957	Oxford index (WD)	Lind & Hellon ³⁴⁾	
1957	Discomfort index (DI)	Thom ³⁰⁾	
1958	Thermal strain index (TSI)	Lee & Henschel ⁵⁰⁾	
1959	Discomfort index (DI)	Tennenbaum et al. ³⁹⁾	
1960	Cumulative discomfort index (CumDI)	Tennenbaum et al. ³⁹⁾	
1962	Index of thermal stress (ITS)	Givoni ⁵⁸⁾	
1966	Heat strain index (corrected) (HSI)	McKarns & Brief ⁵⁹⁾	
1966	Prediction of heart rate (HR)	Fuller & Brouha ⁶⁰⁾	
1967	Effective radiant field (ERF)	Gagge et al.61)	
1970	Predicted mean vote (PMV)	Fanger ⁹⁾	
	Threshold limit value (TLV)		
1970	Prescriptive zone	Lind ⁶²⁾	
1971	New effective temperature (ET*)	Gagge et al.63)	
1971	Wet globe temperature (WGT)	Botsford ⁶⁴⁾	

Proposed systems for rating heat stress and strain (heat stress indices)

1971	Humid operative temperature	Nishi
1972	Predicted body core temperature	Givor
1972	Skin wettedness	Kersl
1973	Standard effective temperature (SET)	Gagg
1973	Predicted heart rate	Givor
1978	Skin wettedness	Gonz
1979	Fighter index of thermal stress (FITS)	Nunn
1981	Effective heat strain index (EHSI)	Kamo
1982	Predicted sweat loss (msw)	Shap
1985	Required sweating (SWreq)	ISO 7
1986	Predicted mean vote (modified) (PMV*)	Gagg
1996	Cumulative heat strain index (CHSI)	Frank
1998	Physiological strain index (PSI)	Mora
1999	Modified discomfort index (MDI)	Mora
2001	Environmental stress index (ESI)	Mora
2005	Wet-bulb dry temperature (WBDT)	Walla
2005	Relative humidity dry temperature (RHDT)	Walla

hi & Gagge⁶⁵⁾ oni & Goldman⁶⁶⁾ slake⁶⁷⁾ ge *et al.⁶⁸⁾* oni & Goldman⁶⁹⁾ zales et al.70) meley & Stribley⁷¹⁾ 10n & Ryan⁷²⁾ piro et al.73) 7933⁷⁴⁾ ge et al.75) nk et al.⁷⁶⁾ ran *et al.*77) an et al.⁷⁸⁾ an et al.⁷⁹⁾ lace et al.⁸⁰⁾ Wallace et al.80)

Effective temperature [Missenard, 1955]:

$$\Im T = t - 0,4(t - 10)(1 - f/100)$$

Equivalent-effective temperature [Aizenshtadt, 1987]:

$$\begin{split} \dot{Y}\dot{Y}\dot{O} &= t \Big[1 - 0,003 * F \Big] - 0,385V^{0,59} \Big[(36,6-t) + 0,622(V-1) \Big] + \\ \big[(0,0015V + 0.008)(36,6-t) - 0,0167 \Big] F \end{split}$$

Apparent temperature [Steadmen, 1994] (Australia):

$$AT = t + 0,33e - 0,70V - 4$$

Heat Index, (USA):

 $HI = -42,379 + 2,04901523t + 10,14333127f - 0,22475541t * f - 0,00683783t^{2} - 0,05481717f^{2} + 0,00122874t^{2} + 0,00085282T * f^{2} - 0,00000199t^{2}f,(8)$

Variables for HIS (Heat Stress Index) [Jill D.Watts, L.S.Kalkstein, 2004]

- Maximum and Minimum Apparent Temperature
- Mean Cloud Cover (average hourly cloud cover from 10AM to 6PM).
- Cooling Degree Hours (sum of hourly degrees over 18.3 degrees apparent temperature for 24 hour period).
- Consecutive Day Count, since the same oppressive weather for several consecutive days increases human health risks (day counted when mean daily apparent temperature is at least 1 standard deviation above the mean).

The steps necessary to create HIS:

Method: Summation of Variables. This is an example using Moscow on July 28, 2010. Sum = At max +At min + CDD + Cons Day+ (1-CC mean)

Variable	Data	Persentage	
AT_MAX	42.2 °C	0.990	0.4-
AT_MIN	32.2 °C	0.999	0.3-
CDD	178 °C	0.92	
CCMEAN	3.46	0.44	0.15-
Cons_day	1	0.81	0.1
	SUM	4.29	

4.29 represents the 95th percentile

The final HSI value is expressed as a percentile. Summing the percentiles for the five variables yields a final distribution and a final percentile. In this case, the HSI for Moscow for July 28, 2010 is 9.5 (converted from the 95th percentile).

The daily HIS value ranges:

9.6-10.0 EXTREME 9.0-9.5 HIGH 7.0-8.9 MODERATE 4.0-6.9 LOW 0.0-3.9 NONE

Forecast capabilities:

Spatial distribution of first-order weather stations throughout European Russia

Thanks for attention!