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Introduction 

Components of the new forecast system (New Forecast Paradigm): 

a. Ultimate goal. The extension of the traditional forecast process: reduction of 

forecast uncertainty, and also providing forecast uncertainty. 

b. Forecast process. In the new paradigm, not only the best estimate of predicted 

system, but also uncertainty is propagated. 

c. Observing system. Estimation of random instrument and representativeness error 

variance, as well as estimation of systematic errors.  

d. Data assimilation. Reduction of analyses error and assessment of uncertainty in the 

analyses. This information is critical input for the generation of initial ensemble 

perturbations. 

e. Numerical modeling. Reducing systematic and random error related to model 

formulation. A quantitative assessment and simulation of model related random and 

systematic errors. 

f. Ensemble forecasting. In the new forecast process, ensemble forecasting occupies 

a central place in the entire process following the observing, data assimilation and 

numerical modeling components. 

g. Statistical pre-processing. 

  
Z.Toth et al. Completing the forecast: assessing and communicating forecast 

uncertainty. – ECMWF Workshop on Ensemble Prediction 7-9 November 2007. 



Introduction 

• An Ensemble of Data assimilations (EDA) system was introduced at 
ECMWF.  

• The EDA consists of an ensemble of ten 4D-Var assimilations that differ 
by perturbing observations, sea surface temperature fields and model 
physics.  

• The main justification for implementing the EDA is that it quantifies 
analysis uncertainty.  

• It can be used to estimate flow-dependent background errors in the 
deterministic 4D-Var assimilation system. 

L.Isaksen et al. Ensemble of Data assimilation at ECMWF. – Technical 

memorandum N636, December 2010: 
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a

kk

f

k xAx 11  )( 0 f

kkkk

f

k

a

k xMyKxx 

1)(  k

T

k

f

kk

T

k

f

kk RMPMMPK1111   k

T

k

a

kk

f

k QAPAP

Forecast 

Observations 

Analyses 

0

ky



Ensemble Kalman filter 
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Ensemble pi-algorithm  

The forecast step can be written the 

following way:  
f

1( ) ( ( )) ( )a

k k kt M t t ,  x x η

where  1( )f

kt x is a vector of forecasted values at moment of time  1kt

( )a

ktx  is the vector of values, obtained after a step of analysis at moment of time kt ,  

M is a model operator, ( )ktη  is Gaussian white noise with covariance matrix kQ . 

 



Ensemble pi-algorithm 

The step of analysis is expressed as: 
1( ) ( ) ( ( ( ))),

k

a f a T f

k k k k t kt t H t  x x P H R y x                                

where a

kP  is an analysis error covariance matrix,  

kR is an observation error covariance matrix,  

H is an operator (generally speaking, nonlinear), transferring values in the grid points  

to the observations point,  

H - is an linearized operator,  

kt
y  is  an observations vector  at moment of time kt  



Ensemble pi-algorithm 

So let present the algorithm in the equivalent way: 

         
1

1

1 1 1( ) ( ( )) ( ) ( ( ( ( )) ( ))),
k

a T

k k k k k t k kt M t t H M t t




      x x η P H R y x η      

where 1

1 1 1 1 1( ) , ( )a f f T f T

k k k k k



       P I KH P K P H HP H R , 

1

f

k P  is a forecast error covariance matrix.  

Written this way the formula unites the steps of analysis and forecast,  

that allow one to neglect indexes “a” and “f” further on. 

 

Let true value tx  suffices the following equation:  

1

0 0

( ) ( ( )),

( ) .

t k t k

t

t M t

t

 



x x

x x
 

The observation data can be expressed as: 

( ( )) ,
k

k

t t kH t y x ε  

where 
k
ε  is random observation error 

 with zero-order expectation value and covariance matrix kR . 



Ensemble pi-algorithm 

Let the estimation error be determined as  
1

1 1( ) ( )k

t k kt t

  dx x x . 

 The error suffices the following equation: 
1 1 1

1 1( ( )) ( ( )) ( ) ( ( ( ( )) ( ( ( ) ( ))).k T k

t k k k k k t k k kM t M t t H M t H M t t  

       dx x x η P H R x ε x η  

If to estimate 1kP  using the formula (Yaglom, 1987) 

   1 1 1 1

1

1

1
,

1

N
T T

k k k k

k n n n n

nN

   





 

P dx dx dx dx  

one obtains a version of the ensemble Kalman filter.  

Taking this formula for 1kP  into account one obtains a system of equations relative to 1k

n

dx  



Ensemble pi-algorithm 

Now let one consider a modification of the algorithm described above, so it can be applied for 

forecasting of ensembles. It is known that such a forecast requires setting an ensemble of initial fields 

n{ }x in such a way that ensemble average nx  is equal to a
x , while covariances T( )( ) a

n n n n  x x x x P , 

where 
a

x  is the result of the step of analysis of the Kalman filter, a
P  is a analysis error covariance 

matrix. The following ensemble of initial fields suffices the first condition: 

1

1

1 1 1( ) ( ( )) ( ) ( ( ( ( )) ( ))),
k

T n

n k n k n k k k t n k n kt M t t H M t t




      x x η P H R y x η  

if accepted that: 

( ( ( )) ( ))) ( ( ( ))).n k n k n kH M t t H M t x η x  

At this the ensemble average will be the estimation obtained using the Kalman filter, while its 

deviation from ensemble member is considered as the estimation error. To describe the errors with the 

formulas of the classic Kalman filter one has to set a perturbed observations ensemble: 

.
k k

n k

t t n y y ε  



Ensemble pi-algorithm 

Analyses step:  

( 1)

2 2 ,k T T T T

n

  X F Π D  2 ( ( )) ( ),T

n k n kn
M t t F x η

   
1

1 1 1

2 1

1
( ( ( ) ( ))).

1 k

n T
T k T k n

m k t n k n km
H M t

N 

  

   


Π dx H R y ε x η

Where 

1 N

1 1

1 N

K K

dx dx

D

dx dx

 
 

  
 
 

F is a matrix with columns { , 1, , }k

n n Nf : 

( ( )) ( ) ( ( ))k

n n k n k n kM t t M t  f x η x  

F  is a matrix with columns { , 1, , }k

n n Nf : 

1( ( ( )) ( )) ( ( ( )) ( ))k k

n n k n k n n k n kH M t t H M t t    f x η ε x η  

1( ) ,T T T D I Π F

1

2( 0.25 ) 0.5 .T   Π C I I

1

1 2

1
( ) .

1

T T

N

   


C F H R HF Ε C C



«Local» ensemble pi-algorithm 

The formula  
N

T
i i

i 1

1
P dx dx

N 1 
  is approximation, so, if dimension of sample N is small 

covariance function property is not carried out. In a number of works it is offered for repayment 

"false" covariances on the big distances to use formula P P ( )   , where ( )   - function from 

distance between the points, usually looking like 
2

e

. 

It is well known, that P  is also covariance matrix. 

 

Let’s consider the analyses step: 
i i T 1 i i

a f fx x D[(HD) R (y Hx )]    

 

Rectangular matrix TD(HD)  is a covariance matrix of forecast errors in a grid cells and points of 

observations. We will multiply the elements of matrix by ( )  . 



«Local» ensemble pi-algorithm 

So we have the following formula for m-th grid point: 

   T T T T 1

m m

1
dx f [DD H ( )R (HF E)]

N 1

    


where  

(1)

m

T

m
(N)

m

dx

dx

dx

 
 

  
 
 

- the ensemble of perturbations.  

And, for individual perturbation in m-th grid point 

       TT T T

mm m m
dx f dx  

  0

0 0 0

0

j (i ,m)i i i

m i i ii
i

dx (f )e


   
T T T T T T T T

1 K 1 1 K K

T T T

1 K

D [dx , ,dx ] F [ dx , , dx ],

F [f , ,f ]

    



In the case m   we will have the common variant of ensemble  - algorithm. 

 

 



Numerical realization of «local» algorithm  
We will consider iterative variant of analyses step, in one iteration only one observation is used 

(in the case, when observation errors don’t correlate with each other): 
(l) (l 1) (l) (l) T 1 i (l 1)

a a a ax x Dx [(HDx ) R (y Hx )]     , 

 where l- the iteration number. 

 

1) Let’s consider for simplicity, that observations are located in grid points. Then, for grid 

point 0k i : 

       TT T T

kk k k
dx f dx    

 

 
0 0

j i 2 j

k i 0 ii
dx r dx   

 

0

T T T

k k k

T T T 2 T

k k k 0 i k

(I )dx f ,

(I ) f r dx C

 

   
 

 

k  for that grid point may be calculated by formulas which have been received earlier (common 

formulas). 
1/ 2

k k(C 0.25I) 0.5I    . 

Also “perturbed” observations may be considered.  

 



Numerical realization of «local» algorithm 

2) For grid points, not coinciding with 0i : 

 

       TT T T

kk k k
dx f dx    

  0 0

0 0 0

j (i ,k) (i ,k)i 2 j k k

k i 0 i ii
dx r dx e C C e

     . 

0idx  has been calculated on the previous step, so 

0

T k 1 T

k i kdx (I C ) f  . 

 

For calculation of a square root from a matrix in the previous step the own vectors and own 

values of matrix kC  have been calculated. 
0

0

(i ,k)k k

i(C ) (C )e


    

So it is possible to use the own vectors and own values of matrix kC  calculated on the previous 

step for a finding of a return matrix. 

 



Lorenz model  

Lorenz-98 mode: Lorenz E.N., K.A.Emanuel. Optimal sites for supplementary weather 

obresvations: simulation with a small model. – MWR, 1998, vol.55, p.399-414. 

 

Let’s concider J values 1 Jx , ,x  (J=40). 

The model equations are: 

j

j 1 j 2 j 1 j

1 J 1 1 J 1 J 1 1

dx
(x x )x x F, j 1, ,J.

dt

x x ,x x ,x x

  

    

    

  

 

 

It is one of the elementary possible systems reproduces properties of many atmospheric models. 

For the solution of system of the equations 4th order  Runge-Kutta scheme is used. t 0,05  , 

that corresponds to 6 hours (t=1 corresponds to 5 days), F=8. 

 



Lorenz model 

«Meteorological» properties appears after n 6-hour steps. 

 In the paper (Lorenz, Emmanuel, 1998) n=7200. 

For “true” value modeling the following initial field has been considered:  
t

0x (F/ 4;F/ 2)   

and forecast for n=360 time steps has been made (90 days). 
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Numerical experiments 

Numerical experiments with Lorenz model include the following calculations: 

 

1. tx  - «true» value. The forecast by initial value t

0x N(F/ 4;F/ 2)  for 90 days. 

2. d t 0x (0) x (0) , N(0,s )    - «known» initial value, not equal to “true” value.  

3. Ensemble of initial fields i i i

d 0x (0) x (0) , N(0,s )    . 

4. Observations: 0 t 0 0 0y Hx , N(0,r )    . 

5. Ensemble of observational errors (perturbed observation) for aP  modeling 
(i) i i

0 0 0 0 0y y , N(0,r )    . 

6. The observations are modeling at every time step in ¼ part of region. 



Numerical experiments 

The first series of experiments. 

In numerical experiments the following values of parameters have been used: 

0 0 0 ens tr F/ 40, s r ,N 20, F 8, F1 F*0,95, N 2000.       

Data assimilation has been made on every time step. Observations have been analised iteratively. 

In figures the root-mean square error and trace of covariance matrix for last 1000 time steps are 

presented 

root-mean-square error

0

1

2

3

4

5

6

1 60 119 178 237 296 355 414 473 532 591 650 709 768 827 886 945

rms_for

rms_notloc

rms_local

trace

0

0,1

0,2

0,3

0,4

0,5

0,6

1 69 137 205 273 341 409 477 545 613 681 749 817 885 953

tr_notloc

tr_local



Numerical experiments 

The second series of experiments. 

 

 

In 1st series of experiments it is visible, that algorithm not «diverged», there is no error growth, 

but after such big time (it is more than year) root-mean-square values and trace values leave on 

certain asimptotic level ( 0rms r ). 

For this reason the second series of experiments has been organised in a different way. 

 

The following values of parameters have been used  

0 0 0 ens tr 1, s r ,N 20, F 8, F1 F*0,95, N 7200.       

The data assimilation has been made for time steps t tn N , ,N 200    

 

 



Numerical experiments 

The adaptive correction of ensembles of the forecast errors was carried out for prevention of fast 

"divergence" of algorithm. The adaptive algorithm consists in the following: 

 

 
2N

2 i

k k

i 1

dh /(N 1)


    

Let’s note “residual” by r, 0 fr y Hx  . It’s well known, that T T

frr HP H R  . So we will 

concider, that 2 2 2

i i 0r r    is “observations” of variance at observational point. Than correction of 

variance value in grid point may be made by the formula, which is a variant of simplified 

analyses: 
2 2

0 0

0 0

0 0

I I
(k,i ) (k,i )2 2 2 2

k k i i

i 1 i 1

( ) /e e
 

 

       . 

After that the correction of ensemble of the forecast errors can be made as 

follows

1/ 2
2

i
i k

k k 2

k

dh dh
 

  
 

 

and, accordingly, the matrix fP  will change. 

 



Numerical experiments 
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Numerical experiments 

 trace
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Final conclusions: 

1) In the new forecast process, ensemble forecasting occupies a central place 
in the entire process following the observing, data assimilation and 
numerical modeling components. 

 

2) The major part of the modern forecast system is data assimilation. 

 

3) Algorithms of the data assimilation based on the dynamical-stochastic 
approach, allows to solve a problem of generation perturbations 
corresponding to the analysis error. 

 

4) The major problems are: 

• Small number of ensemble members; 

• The theoretical justification of data assimilation algorithms in case of 
nonlinear operators of forecast and observations; 

• The estimation of random errors of model and observations; 

• «Adaptive observations». 




