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Data assimilation Introduction

Emission tracking scenario (X,Y,T)
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Fig. 1: Data assimilation scenario with 12 regularly placed measurement
devices for the model with zero sources. Analysis is marked with green and
measurement locations are marked with blue spikes (left). "Truth” is red
with blue spikes in measurement locations (right) and superposition

Truth and Analysis in the middle.
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Data assimilation Introduction

Emission tracking scenario (X,Y,T)
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Fig. 1: Data assimilation scenario with 12 regularly placed measurement
devices for the model with zero sources. Analysis is marked with green and
measurement locations are marked with blue spikes (left). "Truth” is red
with blue spikes in measurement locations (right) and superposition

Truth and Analysis in the middle.
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Data assimilation Introduction

Emission tracking scenario (X,Y,T)

Truth& Analysis t=15 Truth&Measurements

Fig. 1: Data assimilation scenario with 12 regularly placed measurement
devices for the model with zero sources. Analysis is marked with green and
measurement locations are marked with blue spikes (left). "Truth” is red
with blue spikes in measurement locations (right) and superposition

Truth and Analysis in the middle.

HBMaMI

Penenko A.V. (ICM&MG SB RAS) Data Assimilation CITES 2013 4 /38



Data assimilation Introduction

Emission tracking scenario (X,Y,T)

Analysis&Measurements Truth& Analysis t=25 Truth&Measurements

Fig. 1: Data assimilation scenario with 12 regularly placed measurement
devices for the model with zero sources. Analysis is marked with green and
measurement locations are marked with blue spikes (left). "Truth” is red
with blue spikes in measurement locations (right) and superposition

Truth and Analysis in the middle.
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Data assimilation Introduction

Emission tracking scenario (X,Y,T)

Analysis&Measurements Truth& Analysis 1=35 Truth&Measurements

Fig. 1: Data assimilation scenario with 12 regularly placed measurement
devices for the model with zero sources. Analysis is marked with green and
measurement locations are marked with blue spikes (left). "Truth” is red
with blue spikes in measurement locations (right) and superposition

Truth and Analysis in the middle.
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Data assimilation Introduction

Data assimilation features

Data assimilation algorithms are used to improve a model-based forecast
with the use of measurement data.

e Measurement data is not enough to reconstruct the whole field (How
to define the solution?)

@ Model state is of interest (e.g. atmosphere parameters are rapidly
changing).

@ Solution should be obtained in "real-time” for the situation goes out of
date very fast.
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Data assimilation Problem statement

Convection diffusion reaction model

@ Multidimensional mathematical models describing heat, moisture,

radiation and substances transport has the following general structure:
13, V) = 22 4 divp(d5 - prad 8) + p((S8) — o — ) = 0,
ot
P =R+E Roouna(@) =&a+8 ¥V =Ya+C.

Here ¢ is model statefunction, {p, & u} — Y are parameters of the
model, S is transformation operator, fa & &as an are a priori sources and
initial condition.

@ Incoming measurement data W, are connected with model
statefunction with the measurement operator H

Vi = [H()m + 17,

Y { g 5 7j are control functions introduced to the model rigid
structure to provide flexibility for data assimilation. BMaMI
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Data assimilation and Tikhonov regularization

Data assimilation and Tikhonov regularization

Consider the following constrained optimization problem
J@H, Ay = | H T — | 4 a7
WRT the model approximated with implicit finite-difference scheme
L¢j+1 _ ¢j +T1cj+1 + rj+1,

Stationary point of the augmented functional is the solution of

Lo YO (9
2H*H  L* AR 2H*W '
Solution ¢/*1 of the system is also the solution of

(H*H + al*L) ¢! = H*W + al*(¢/ + 711)

and a minimum of

J(Y) = [[HEH —v|* + a|[Lf T = (¢ + A2
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Data assimilation and Tikhonov regularization

Assimilation schemes

@ "Explicit” scheme (Strong constrained)
LG = f 41,
G = G 4K (Hq;jﬂ _ \IJ) ,

with the corresponding Tikhonov functional
[Perianez,Reich,Potthast, 2013]

: . : .12
S = e~ v a5
@ "Implicit” scheme (Weak constrained)
: - - 1
Lt = ¢ + 777 4+ 47,
. 2a
L*¢* = H* (H¢/ ™ —w) |
corresponding Tikhonov functional

) = |H T — | + a||Lg Tt — (¢ + A7
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Data assimilation and Tikhonov regularization

Variational data assimilation and Tikhonov regularization

Denote functional
I = HngSH1 _ WH2 +a HL¢j+1 — (¢ +Tfj+1)H2'
minimum with ¢/*1(a). Consider the following notations
O(a) = J(@ ), &a) = L TH(a) = (¢ + 7T
B(a) = [|H/ (@) - v

Theorem (Analogous to [Tikhonov,Goncharsky,Stepanov,Yagola,1990])Let
H,L be matrices, and L is invertible one, then

2
)

@ Functions are continuous with a > 0

@ Function ®(«) is convex and differentiable ®'(«) = £(«).

e Function {(«) is monotonically nonincreasing and functions
®(«), B(«) are monotonically nondecreasing with a > 0. On the
interval (0, ag) with L/t () # (¢ + 7#711) functions ®(a) are
strictly monotone. MBMMT

Penenko A.V. (ICM&MG SB RAS) Data Assimilation CITES 2013 11 / 38



Data assimilation and Tikhonov regularization

Variational data assimilation and Tikhonov regularization

O(a) = (¢ (), €&(a) = Ly a) = (¢ + A,
Ba) = [|H/ (@) = v
The following holds:
e With increasing model "weight:
Jim () =0,
lim ®(a)= lim B(a) = |HL (¢ + A1) — .

a—-+00 a—r—+00

e With increasing data "weight”:

akrg]—i-oag(a) =0, akr(;n-i-Oq)(a) - ahr(?—i-oﬁ(a) =0
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Data assimilation and Tikhonov regularization

Assimilation parameter

@ Let the discrepancy level be d,.

M _‘zrl) _ it 2
it = m T =,
ot v = |32 A

@ Due to monotonicity the assimilation parameter can be calculated with
the following algorithm

a1 = 1,
P— 5*
B Y A
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Data assimilation and Tikhonov regularization

Assimilation parameter based on statistical considerations

o Let data consist of "exact” solution with additive Gaussian noise

\U{n = ¢{(m) + Um§m7 ém ~ N(07 1)

@ With probability p

R
O = Z T() < X,?nv(M,p),

m=1

where x2. (M, p) is solution of

P(Xn < Xinw(M, p)) = p.

@ l.e. the probability p serves as an assimilation parameter.
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Multidimensional assimilation problems

Splitting method

In 2D case the problem can be approximated with the following equation
¢° =0,

+ AT+ A YT = AL

51§
T
From the point of view of parallel computations an additive-averaged
splitting scheme is of special interest [Samarsky, Vabishevich,2003].

+1 i j+1 /
& —¢I+A¢j+1:fj+1 y  — ¢
27 xrx x 2T

o 2T
FITT = Ly i

6= P ).

j+1 +1
+A G =
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Data assimilation for 1D convection-diffusion equation

"Implicit” data assimilation algorithm for 1D
convection-diffusion model

Nonstationary 1D model can be approximated with matrix equation on a
space-time domain:

¢° =0,
Lyt = (E+7A) ¢ = ¢f + 7L 4 71T

Convection-diffusion operators are approximated with tridiagonal systems.
—ail i1 + by ¢>’+1 R A A}
bt ~Gid; =g et i1, N =2,
b;q&f-“— il 1—¢J—|—7'f1+1+7'r’+1, i=N-1,

HBMaMI
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Data assimilation for 1D convection-diffusion equation

Data assimilation problem solution

Data assimilation problem solution is minimum of the functional

N—1 41 J+1\ 2 N—1
. . ¢f — Y i1 N2\ T
(¢, Pt = } : i = i M14+ —l—a} : (rlj—i— ) Z
i=1 i=1

WRT numerical scheme for direct problem. Here o; are standard deviations
of measurement device errors. Mask I\/I{Jr1 is equal to 1 in a measurement
point and 0 otherwise.

Introducing Lagrange multipliers (adjoint functions) ¢™*:

N—1 ¢,+1 wﬁ N—1 -
T+l 4l w41y 2ppit1 f+11) 2
B, it ety = (3 M oY (4)?) ]
‘ oj ; 2
i=0 i=0
-1
j+1 j+1 j+1 1 j+1 i+1Y  xj41 E
+Z (—a,- i1t bigl gl — ¢ T — 7 )¢i :
i—0 HUBMuMI
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Data assimilation for 1D convection-diffusion equation

Assimilation system

Equating first variations of target functional to 0, we obtain the following
algorithm:

a¢?¢(¢j+1, rj+1,¢*j+1) -0
is equivalent to the direct problem scheme.

a,’,-+1¢(¢f+1, AL ) = 0
is equivalent to

arf™ —¢¥tl =0 j=0,...,N—1.

1
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Data assimilation for 1D convection-diffusion equation

Data assimilation system

1l eint
a¢1:+1¢(¢]+ 7rj+ 7¢*J+ ) = 07
is equivalent to
WAL poitt M ey
_Ci+1¢,'1+i¢,' =""> ¢J, - ¥ T, 1 =0,
+ aos?
j+1 j+1 +1 M; +1 j+1
—Cin ¢y FhidT —aiadtl = —— (¢ -V T
+ ao?
1
i=1,...,N—2

wj+1 Wl Miooir i .
bi¢p™ " —ai19M 1 = 2 P —WT ) i =N -1
1
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Data assimilation for 1D convection-diffusion equation

Matrix Data Assimilation System in 1D Case
The system can be aggregated to matrix equation

[Penenko,2009, PenenkoAV,2006]

AT+ BT = FITY
AT+ Bl - ot = AT
Bl_q)Ji+1 _ Clq){ir} — F;-l+1,

b -1 lof] 0
(M b ) Cf—( 0 a,-_1>’
j+1 j
+1 _ ¢l j+1 _ ¢I .
q)J,' ( ¢TJ+1 )7 FJ = < M,-;-\'IJJ_+1 )7

that is solved with matrix sweep method.
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Data assimilation for 1D convection-diffusion equation

Fine-grained data assimilation in multidimensional case

Splitting steps corresponding to spatial grid lines containing (projected)

measurement data are substituted with minimum of the augmented
functional

Ny—1 (¢1+1) yitl 2 _
- . . I
NN O L LIREEDY ()
i=0 !

+<(( + 27A, )qb”'l ¢j—7f){+1 —Tr{(+1)l,¢;‘(>.

Ny —1 (¢/+1) A 2 Ny —1
o j+1 rJ+1’ I\/IJHT + «; (
g = 3 (L) e S

—|—<(( +27A )qb”'l ¢j—7'f-}{+1 —Trj+1),7¢;>.

y
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Numerical investigation of data assimilation algorithm 1D problems

Data assimilation scenario (X,T) with stationary
measurement devices

Fig. 2: Data assimilation of data collected in two points on each time step.
Points are chosen inside the domain (left) and on the boundary (righ
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Numerical investigation of data assimilation algorithm 1D problems

Data assimilation scenario (X,T) with mobile measurement
device
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Fig. 3: Data assimilation of data collected with mobile measuremen
device. "Truth” (upper) and analysis(inner) with the model for zero a p
data [Ajnur Kussainova NSU master thesis,2013]. MBMaMP
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Numerical investigation of data assimilation algorithm 1D problems

Data assimilation scenario (X,T) with stationary
measurement devices
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Fig. 4: Data assimilation with stationary measurement devices [Ajnu
Kussainova NSU master thesis,2013].
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Numerical investigation of data assimilation algorithm Multidimensional scenarios

Assimilation parameter with "small errors”
Conditions

Measurement system

m|1 2 3 4 5 6 7 8 9 10 11 12
iXm|33 33 67 67 25 25 75 75 40 60 40 60
iYm |33 67 33 67 25 75 25 75 60 40 40 60
om (01 1. 05 1. 1. 2. 1. 05 1. 05 3. 01

Meteorology

vu=01 v=01 p=01

Grid domain

nT=100 T =1.
nX=100 X =1.
nY =100 Y =1.
ID: 06_08_2013 18 50
e




Numerical investigation of data assimilation algorithm Multidimensional scenarios

Assimilation parameter with "small errors”
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Fig. 6: Solution error WRT assimilation parameter on "small errors”
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Numerical investigation of data assimilation algorithm Multidimensional scenarios

Assimilation parameter with "big errors”

Conditions

Measurement system

m |1 2 3 4 5 6 7 8 9 10
iXm |33 33 67 67 25 25 75 75 40 60
iYm |33 67 33 67 25 75 25 75 60 40
om |05 b, 25 5 5 10. 5. 25 5. 25

Meteorology
u=01 v=01 p=0.1
Grid domain
nT=100 T =1.
nX =100 X =1.
nY =100 Y =1.

ID: 06_08_2013 18 38
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Numerical investigation of data assimilation algorithm Multidimensional scenarios

Assimilation parameter with "big errors”

—  Hes.log)r=—10
3UBHCHMOCTL OIHOKH OT 1P| ... crar. p=0.01

Hopma abe. <= crar.p=0.05
OMHOKH === crar. p=0.1
2.0 === egrar. p=0.2
crar. p=0.3
sl === cTarT.p=0.5
' Bes yeroenms
LoF
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Fig. 7: Solution error WRT assimilation parameter on "big errors”.
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Numerical investigation of data assimilation algorithm Measurement system

Measurement system with "small errors”

Conditions

Measurement system

m|1 2 3 4 5 6 7 8 9 10 11 12
iXm|33 33 67 67 25 25 75 75 40 60 40 60
iYm| 33 67 33 67 25 75 25 75 60 40 40 60
om (01 1. 05 1. 1. 2. 1. 05 1. 05 3. 01

Assimilation parameter
logior =—10. p=20.3

Meteorology
u=01 v=01 p=0.1
Grid domain
nT=100 T =1.
nX=100 X =1.
nY =100 Y =1.

ID: 06 08 2013 20 50
CITES 2013
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Numerical investigation of data assimilation algorithm Measurement system

Measurement system with "small errors”

=  nes.nM=4
39BEHCHMOCTD ONTHOKH OT YHcl Hew. nM=8
Hopma
) = pee.nM=12
b coTHO R ====  crar.nM=4
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2.0 ===+ grar. n=12
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[u] 0 40 ] a0 100

Fig. 8: Solution error WRT measurement device number with ”smalE

errors’. The more data the better.
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Numerical investigation of data assimilation algorithm Measurement system

Measurement system with "big errors”

Conditions

Measurement system

m |1 2 3 4 5 6 7 8 9 10 11 12
iXm|33 33 67 67 25 25 75 75 40 60 40 60
iYm |33 67 33 67 25 75 25 75 60 40 40 60
om |07 7. 35 7. 7. 14. 7. 35 7. 35 21. 0.7

Assimilation parameter
logior =—10. p=20.3
Meteorology
u=01 v=01 p=0.1

Grid domain
nT =100 T =1.
nX=100 X =1.
nY =100 Y =1.
ID: 06 08 2013 20 b7
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Numerical investigation of data assimilation algorithm Measurement system

Measurement system with "big errors”

=  nes.nM=4
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Fig. 9: Solution error WRT measurement device number with "big erroE
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Conclusions

@ Data assimilation problems are solved with incomplete data and
solution interpretation is not obvoius.

@ Variational data assimilation algorithms can be categorized as
Tikhonov regularization for measurement data inversion problem with
models as regularizers.

o Combination of splitting schemes with data assimilation allows to
obtain computationally efficient algorithms. Their performance is
confirmed with numerical experiments.

HBMuMI"

Penenko A.V. (ICM&MG SB RAS) Data Assimilation CITES 2013 33 /38



Acknowledgements

Thank youl

The work is partially supported with Program Ne 4 RAS presidium and Ne 3 DMS
RAS, RFBR grant Ne 11-01-00187, SB RAS integration projects Ne 8 and 35.

HBMuMI"

Penenko A.V. (ICM&MG SB RAS) Data Assimilation CITES 2013 34 / 38



Main data assimilation approaches

@ Stochastic-dynamics approach (statistical parameter estimation) [Ghil,
Malanotte-Rizzoli,1991] et.al.

o Kalman-type filters (Gussian distributions parameters are evaluated
with measurement data).

o Particle filters (measurement data are used to weight ensemble
members) [review by van Leeuwen,2009].

e Variational (data assimilation problem solution is sought as the
minimum of a functional) [B.B.Menenko, Obpasuos, 1976], [Le Dimet,
Talagrand, 1986], [Talagrand, Courtirer, 1987], [Rabier et al., 2001],
[Shutyaev,2001], [Agoshkov,Ipatova,2006] et al.

o 3D-4DVAR (data assimilation window).
o Trajectory tracking (strong/weak-constrained).
o ...

@ Hybrid approaches EnVar n 1.4.
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