Eddy diffusion in the atmosphere and at the ocean surface

29 June 2011 Exeter RMets Annual meeting

G.S. Golitsyn A.M. Obukhov Institute of Atmospheric Physics, RAS Pyzhevsky 3, Moscow 119017 gsg@ifaran.ru $k = 0.17 \text{ cm}^2/\text{s}$ diffusion coefficient of O₂ into N₂ diffusion equation, Adolf Fick, 1855,

after Charles Fourier, 1821.

K r u, eddy diffusion coefficient,

G.I. Taylor. 1915.

 $K \sim r^{4/3}$ for the atmosphere,

L.F. Richardson 1926, 1929.

Compare the last two lines and get $u \sim r^{1/3}$! Kolmogorov 1941

- Richardson 1926, 1929
- Golitsyn 2001

L.F. Richardson and Stommel, 6 January, 1948 (J. Meteorology 1948. V. 5. No. 5. 238 – 240) parsnip white pieces ~ 1 inch relative distance l with time t

$$K(l) = \frac{1}{n} \frac{(l_0 n^{-1} l)^2}{2t}$$

 l_0 - initial distance between markers at $t = t_0$

~100 markers for about an hour, for l = 3m, t = 30 sec.

$$K(l) \sim l^n$$
, $n = 1.4$ in ref. 1948

recalculation by myself n = 1.32.

Рис. 1

3 c

Taylor
$$K(r) \sim r \ u$$
, $u = \left\langle D_u(r)^{1/2} \right\rangle = \left\{ \left\langle u(x+r) \ u(x)^2 \right\rangle \right\}^{1/2}$

how to get $D_u(r)$, the structure function for velocity field in the sea surface waves?

We know the time elevation spectrum of the surface

$$E_z() \sim {}^n, \qquad n(), \qquad = \frac{U_{10}}{c}$$
 - the wave age vertical velocity: $w = \frac{dz}{dt}, \qquad E_w() = {}^2E_z().$

Due to water incompressibility $E_u() \sim E_w() = {}^2E_z()$

dispersion relation:
$$^2 = kg$$

(Golitsyn 2007 general case for n = 4)

Probability transformation E()d = E(k)dk

$$E_{u}(k) = c_{gr}E_{u}() \sim c_{gr}kgE_{z}(k())$$
$$D_{u}(r) = 2(1 \cos r)E_{u}(k)dk$$

$$D_u(r) \sim r^{\frac{n-3}{2}}; \qquad K(r) \sim r \; , \qquad = \frac{n+1}{4}$$

From the parabolic nature of the diffusion equation with scale variable diffusion coefficient K(r): r

$$r^{2}$$
 $S(t) \sim t^{\frac{2}{2}} = t$, $=\frac{8}{7 n}$ at $=\frac{n+1}{4}$

Okubo = 1.15 for r = 1000 km

$$= 2.34$$
 for 1 day $< t$ 1 month

3 locally

n = 4 Kitaigorodsky 1962, Zakharov 1966, Toba 1973 Energy transfer: $D_u(r) \sim r^{1/2}$; $K(r) \sim r^{5/4}$, =1.25, $S(t) \sim t^{8/3}$ $n = \frac{13}{3} = 4 + \frac{1}{3}$; Hasselmann K., Hasselmann S. 1974

Spectral momentum transfer

$$D_u(r) \sim r^{2/3}, \quad K(r) \sim r^{4/3}, \quad S(t) \sim t^3,$$

$$n = \frac{11}{3} = 4$$
 $\frac{1}{3}$; Zakharov&Zaslavsky 1983:

Spectral action transfer: $D_u(r) \sim r^{1/3}$, $K(r) \sim r^{7/6}$, $S(t) \sim t^{12/5}$,

$$\sim t^{-1}$$
, $\frac{1}{2}$, $\frac{1}{2}$, Golitsyn 2010

Gagnaire-Renou E., Benoit M., Badulin S.I. J. Fluid Mech. 2011 computations:

$$n = \frac{13}{3}$$
 for > 2, young waves, small fetch, $t \sim 1.5$ hr
= 4/3, = 3 Richardson & Stommel: = 4/3!

$$n = 4$$
 for $1.2 < < 2 = 5/4$, $= 8/3$, $t = 2$ 4hr

no reliable data

n = 11/3 for 0.83 < 1.2 old waves near saturation t 4hr

=7/6, =2.4 Okubo: =1.15, =2.34!

Horace Lamb, 1895. Hydrodynamics

§ 349. Surface waves with viscosity. Linear approximation

$$u = (ikAe^{kz} + mCe^{mz})e^{ikx+nt}, \quad i = e^{i/2}$$
$$w = (kAe^{kz} \quad ikCe^{mz})e^{ikx+nt}, \quad z < 0$$

Small parameter

$${}_{1} = k^{2} / , \quad k = 2 / ,$$

$$n = 2 k^{2} \pm i = (2 {}_{1} mi)$$

$$\frac{C}{A} = m \frac{2 k^{2}}{M} = m 2 {}_{1} << 1$$

$$m^{2} = k^{2} + n /$$

$$m^{2} = k^{2} + i /$$

The depth of the vorticity viscous layer $l \sim (/)^{1/2}$

 $m^2 = k^2 \pm i$ / complex number with large imagenary part on the

complex plane:

$$m^{2} = (k^{4} + {}^{2}/{}^{2})^{1/2} e^{i}$$
, $= \operatorname{arctg} (\pm 1/) = \frac{1}{2} 2$,

$$m = \left(k^{4} + \frac{2}{2} \right)^{1/4} e^{i/2} \quad \frac{k}{\frac{1/2}{1}} e^{mi(-/4)}.$$

For typical ocean waves (Golitsyn, 2010) h = 2.7 m, = 40 m, $= 1.25 \text{ c}^{-1}$,

$$_{1} = \frac{k^{2}}{2} = \frac{4^{2}}{2} = 2.4 \ 10^{8}, \quad {}_{1}^{1/2} = 1.56 \ 10^{4}$$

At

z = 0:

$$u = (ikA + mC)e = kA \quad i + \frac{m}{k}\frac{c}{A} \quad e = kA \quad i + (2)^{1/2} \quad e$$

$$w = (kA \quad ikC)e \quad , \qquad = ikx + nt = i(kx \pm t) \quad 2 \quad k^{2}t = i \quad 1 \quad 2 \quad k^{2}t$$

$$u = 1 + (2)^{1/2} \quad ^{1/2}e^{2} \quad , \qquad = \operatorname{arctg}\frac{1}{(2)^{1/2}} = 90^{\circ} \quad , \qquad = 0.69 = 41$$

$$w = kA(1 \quad ic/A)e \quad = \quad kA(1 \quad 2i)e^{i} \quad = \quad kA(1 + 4^{-2})^{1/3}e^{i_{1}},$$

$$_{1} = \operatorname{arctg}2 \quad = 90^{\circ} \quad 1, \qquad _{1} = 0.004$$

permanent addition to the phase of horizontal wave of order one minute!

Comparing to the phase of vertical component!

Slow horizontal diffusion motion on x!

Mean momentum in time:

$$\langle uw \rangle = \left\langle k^2 A^2 \sin\left(\frac{1}{1} + 2 \frac{1/2}{2} \right) \cos \right\rangle = k^2 A^2 \left\langle \left(\sin \cos 2 \frac{1/2}{1} \pm \cos \sin 2 \frac{1/2}{1} \right) \cos k^2 A^2 \frac{1/2}{1} = \frac{2}{1} h^2 \frac{1/2}{1} = \frac{2}{1} h^2 \frac{1/2}{1} \right\rangle.$$

For the mean waves this corresponds to 1 cm/s

For the mean wind of 8 m/s the Stokes drift:

$$u_a = 29 \text{ cm/s}$$
 and $u_{\text{drift}} = 0.5u_a = 15 \text{ cm/s}$, J. Wu 1975.

But the non-linear Stokes drift is over the whole region of wind action moving as a whole the pollution spot, synoptic scale 1000 km.

 $r^2 = 0.0108t^{2.34}$, $r = 0.1t^{1.17}$ slightly overballistic motion of a spot boundary $r^2 = t^3$ for isotropic turbulence $r \sim t^{1.5}$, when $K \sim {}^{1/3}r^{4/3}$

Due to G.I. Taylor (1915) the diffusion coefficient

$$K(r) = \langle a_2 r \ u(r) \rangle = a_2 r \ D_u(r)^{1/2}, \quad a_2 \quad \text{number}$$

For $n = 11/3$:

$$K(r) = a_2 r_1^{1/4} \quad 3.52 \quad \frac{8}{3} h^2 p_p^{8/3} g_1^{1/3} r_1^{1/3} \sim r^{7/6}$$

Okubo: $K(r) = 0.0103r^{1.15}$

We recalculated from the tables by Okubo $= 1.15 \pm 0.05$

Comparing the theory with experiment for the annual mean wave field for the

World Ocean (Golitsyn, 2010) we find $\frac{1/2}{1} = 1.56 \ 10^{4}$ and $a_{2} = 2.3 \ 10^{3}$.

Okubo for the area of tracer spot:

$$S(t) = 0.0108t^{2.34} = r^2$$
, in cm².

Diffusion eguation

$$\frac{S}{t} = -\frac{K(r)}{r} K(r) - \frac{S}{r}, \quad K(r) = br ,$$

where $[b] = L^2 T^{-1}$ - constant over *t* and *r*. Introduce = bt, $[] = L^{2-}$. Dimensional analysis gives for $[S] = r^2$:

$$S = b_1 \quad , \qquad = \frac{2}{2}$$

With = 7/6 we get = 12/5 = 2.4, while reanalyzing the Okubo tables =2.33+0.10. Our result gives for b = 460. If we take 1971 value = 1.15then $= 2(2)^{-1} = 2.35$. Both values = 1.15 and = 2.34Okubo obtained by eye!! From Stommel $K(r) = 4.6 \ 10^{-2} r^{4/3}$, our estimate

for
$$=\frac{2}{2-}=3$$
, i.e. $S=r^2 \sim t^3$,

as for the case of locally homogeneous and isotropic

turbulence, Batchelor, 1950.

This rheory based on linear approximation (Lamb, 1895)

is self-consistent but determines constants, which depend on wind and fetch, from observations.

The limits of observational results corresponds to theory and numerics of Gagnaire-Renou E. Benoit M., Badulin S.I. 2011, JFM, 669, 178-213.

K. Herterich&K. Hasselmann

The horizontal diffusion of tracers by surface waves JPO

1982. V. 12, 704 – 711.

Random fluctuations of the local Stokes-drift current,

Pirson_Moscowitz can be explained wave spectrum diffusion coefficients for single particle, particle pairs and continous traces spot small scales up to hundreds \mathcal{M} .

Thanks for your attention!