Regional photochemical sources of tropospheric ozone in ETR and Siberia

A.M.Obukhov Institute of Atmospheric Physics RAS

Yury Shtabkin, Konstantin Moiseenko, Andrey Skorokhod, and Elena Berezina

INTRODUCTION

• Effect of photochemically active species emissions on near-surface air composition in industrial regions is non-local and in many cases can be traced in transcontinental scale.

• Largescaled plumes of polluted air defined by observations of tracer species on background stations and calculations with chemical-transport models are examples of this effect.

• In this work we use GEOS-Chem chemical transport model to make an assessment of influence have anthropogenic and biogenic emissions in Europe, ETR and Siberia on total ozone generation taking into account common non-linear properties of O_3 -NO_x-CO-VOC system.

THEORETICAL BASIS OF USED METHODS

Radical-chain mechanism of VOC oxidation in O₃ –NO_x –CO–VOC system

In low polluted air (NO_x < 0.5 ppb) sink occurs by R10 & R11 \rightarrow NO_z

$$NO_z = NO_y - NO_x$$

ASSESSMENT CRITERIA

1) The method of emission reduction – numerical assessments of atmospheric response (AR) [Wild et al., 2001]

$$AR_{REG} = \chi(O_3)_0 - \chi(O_3)_{REG}$$

2) The first derivative of AR in NO_x – ozone production efficiency (OPE) [Trainer et al., 1993]

$$\mathsf{OPE} = \frac{\partial AO}{\partial NO_{x}} \approx \frac{\Delta O_{3}}{\Delta NO_{z}}$$

Within Eulerian approach the value $\Delta O_3 / \Delta NO_z$ is defined as the slope of regression line from measurements or model calculations data in (NO_z, O₃) axes.

METHODS

1) Emission inventories: Anthropogenic (EDGAR, http://edgar.jrc.ec.europa.eu) Biogenic (volatile organic compounds (VOC) oxidation, MEGAN, http://bai.acd.ucar.edu/MEGAN/) Wildfires (GFED, http://www.globalfiredata.org)

2) Global chemical-transport model GEOS-Chem (http://acmg.seas.harvard.edu/geos).

Geographical areas selected for calculations: EU - Europe (35-75 N, -15 - 27 E), ETP -European territory of Russia (41-75 N, 27-60 E), Siberia (49-75 N, 60- 120 E).

ΖΟΤΤΟ

ZOTTO measurements: CO_2 , CH_4 , CO, Ozone, NO_x and aerosols at different heights, meteorology at different heights and on the ground (Temperature, Wind, Humidity), biweekly flask sampling at 301 m height and various irregular ecosystem measurements

zottoproject.org

Background character of the station provide an excellent opportunity to study regional as well as longrange impact of various climatically important sources of pollutants including regional industry and wildfires.

GEOS-Chem vs ZOTTO

Ozone concentration at a height of 6 m above the ground observed at ZOTTO in 2007-2012. P10,90 - percentile, \Box - average. The solid and dashed lines - GEOS-Chem model calculation (monthly averaged concentrations at the first model level, ~ 58 m above the ground).

MODEL EXPERIMENT (I)

MODEL EXPERIMENT (II)

ZOTTO near-sutrface ozone sensivity to NOx and VOC emissions

OZONE PRODUCTION EFFICIENCY (I)

OZONE PRODUCTION EFFICIENCY (II)

The limits of applicability of this approach

DEPENDENCE OF OPE ON THE AGE OF AIR MASS

SUMMARY

• It was shown NO_x -sensitive ozone generation regime dominates over continental lower troposphere in photochemically active period of year. In these conditions AR O3 is determined by regional NO_x emissions, controlling intensity of ozone predictors oxidation reactions. The average value of regional sources impact over middle-latitude anthropogenically polluted air plume axis was about 10–15 ppbv, or ~20–30% of background near-surface ozone concentration in continental areas (35 – 55 ppbv).

• The highest AR_{O3} were obtained for Europe, in eastern regions on the plume axis response value decrease with decreasing of anthropogenic load.

• It was shown winter (OH-limited) ozone generation regime dominates over the continent during cold period. Ozone concentration decrease with increasing of NO, the main part of anthropogenic NO_x emissions.

• It was shown photochemical ozone production value has good correlation with air mass age, determined as NO_x / NO_y .

• It is important the continuation of studies of regional factors role in the balance of nearsurface O_3 using air content complex monitoring data.

REFERENCES

• Wild O. and Akimoto H. Intercontinental transport of ozone and its precursors in a threedimensional CTM // J. Geophys. Res. 2001. V. 106. P. 27729–27744.

• *Trainer M., et al* Correlation of ozone with Noy in photochemically aged air // J. Geophys. Res. 1993. V. 98. PP. 2917-2925.