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Goal

« The main idea of the lecture is in
presentation of a next-generation
scheme for solution of the problems of
atmospheric physics and environment
protection in which variational principles
and methods of direct and inverse
modeling with data assimilation are used.



Challenges of environment forecasting:

‘Predictability of climate-environment system?
« Stability of climatic system?

* sensitivity to perturbations of forcing

Features of environment forecasting: uncertainty

 in the long-term behavior of the climatic system;

* in the character of influence of man-made factors
in the conditions of changing climate

HBMaMI



Uncertainty

* Discrepancy between models and real phenomena

 insufficient accuracy of numerical schemes and
algorithms

* lack and errors of input data

“If my husband would ever meet a woman on the street
who looked like the women in his paintings, he
would fall over in a dead faint.” Mrs.Picasso



CONCEPT
OF ENVIRONMENTAL MODELING

The methodology is based on:

-control theory,

sensitivity theory,

risk and vulnerability theory,
variational principles in weak formulation,
combined use of models and observed data,
» forward and inverse modeling procedures,
» methodology for description of links between
regional and global processes ( including
climatic changes) by means of orthogonal
decomposition of functional spaces for analysis
of data bases and phase spaces of dynamical
systems



Basic elements for concept implementation:

* models of processes

* data and models of measurements

* global and local adjoint problems

e constraints on parameters and state functions

 functionals: objective, quality, control, restrictions
etc.

* sensitivity relations for target functionals and
constraints

» feedback equations for inverse problems



Mathematical model of processes

L(p,Y) EBZ—T+G(CP,Y)—f—r =0

o = +E Y=Y +C.
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Y ER(D, ) parameter vector.
G “space” operator of the model

Variational form

1(@,Y,@") = f (L(9,Y),9 )dDdt = 0
Dt

* ¢"€3J°(D,) adjoint functions

r, &,¢ are the terms describing

uncertainties and errors of the
corresponding objects.



Model of atmospheric dynamics
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Transport and transformation
of humidity

+v-Vg =- (S +5 )

+v-Vq. =S5 +F,



Transport and transformation model
of gas pollutants and aerosols

OTQ;
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Variational form of transport and

transformation models
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Model of observations

* A set of measured data ¢ _,¥ on D"

=[H(p)], +
[H ()], models of observations.

Variational form

1,(@.Y.9)= f[ ~[H (@), =n) War'| x,dDdt =0

* 1 the term describing uncertainty and errors

* »° adjoint function with respect to image of
observation

* x,dDdt Radon’s or Dirac’s measure {‘P(Dtm) = W(D, )}



Functionals for generalized description
of information links in the system

Goal functionals
(I)k(cp) =fEc(cp)Xk(X9t)dDdt E(Ega)(k)a k = 19"'9K
Dy

F_are evaluated functions (differentiable in generilized sense, bounded,

satisfying the Lipschitz's conditions),
x,.dDdt are Radon’s or Dirac’s measureson D, y, €I (D,).

Quality functionals for data assimilation

D, (@) = [(W=H(9)), M(¥ - H(P)), %, (%t )dDdt,
D t

X,,dDdt Radon’s or Dirac’s measures {IIJ(D;” )=Y(D, )}



Functionals for generalized description
of information links in the system

“Measurement” functionals for receptors
K

D(p) = E f [H(9)], 8(x -x,, )dDdt,
k=1 p

t
X . EDZ receptors locations,
O(X — X, )dDdt Dirac’s measure for D; = D,
Functionals for assessment of distributed restrictions

(x,t) <N, U (p(x,7) =<0 distributive constraints
D, (@) = [ (B, () + |8, (®))x, (x,)dDdt = 0
Dy

X,dDdt are Radon’s or Dirac’s measures for constraints on D,, C D,
X, €I (D).



Variational principle

Augmented functional for computational technology
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Algorithms for construction of numerical schemes
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The universal algorithm
of forward & inverse modeling
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Some elements
of optimal forecasting and design

The main sensitivity relations

Algorithm for calculation
of sensitivity functions
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Algorithms for uncertainty calculation
based on sensitivity analysis and
data assimilation:

iIn models of processes

r(x,t) = M;'q,(x,1),
In initial state

§=M3_1 (PZ(X,O), t=0

iIn model parameters and sources

Ir Ir Ir
C=M;T, = M a—a;l"(c‘é,y, o)

iIn models of observations

0 (%,2)= M; M(x,1),
M.,(i=15) are weight matrices



Fundamental role
of uncertainty functions

- integration of all technology components
* bringing control into the system

* regularization of inverse methods

* targeting of adaptive monitoring

» cost effective data assimilation



Optimal forecasting and design

Optimality is meant in the sense that estimations of
the goal functionals do not depend on the
variations :

« of the sought functions in the phase spaces of
the dynamics of the physical system under study

» of the solutions of corresponding adjoint
problems that generated by variational principles

 of the uncertainty functions of different kinds
which explicitly included into the extended
functionals



Construction of numerical
approximations

variational principle

integral 1dentity

splitting and decomposition methods
finite volumes method

local adjoint problems

analytical solutions

integrating factors



ldea and basic approximations

Differential operators of common kind in the models

0 =fxi (Lo - 1)@ dx =fxi L'¢ pdx +
(.07 )|, - [ ()¢ (0)dx =0

f Lo =0, then
(4p.07)| " -f f(x)@ (x)dx =0, i=2,n.

¢ @(x), x_ sx=x, a=1,2 integrating multipliers

Fundamental analytical solutions of local adjoint problems

V=1, g =0}, {g®=0, gP =1}, i=ln -1




Application of local adjoint problems
for convection-diffusion-reaction
equation
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Discrete-analytical system of
equations 9w o
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Variational principle and decomposition
for parallel schemes
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Scenario approach for
environmental needs

* Inclusion of climatic data via decomposition of
phase spaces on set of orthogonal subspaces
ranged with respect to scales of perturbations

e Construction of deterministic and
deterministic-stochastic scenarios on the basis
of orthogonal subspaces

* Models with leading phase spaces



Methods of orthogonal decomposition of
phase spaces of climate- environment
information

Revealing elements of long-term memory of the
climatic system

Analysis of variability of multi-component 4D spaces

analysis of climate as realization of dynamic system
behavior

Analysis of climatic data in term of orthogonal
subspaces gives the possibility to define dominant
patterns 1n general system and to use them for
scenario constructions



Method of orthogonal data
decomposition

1. Data base 1s presented as (N x M ) -matrix
A={p ={p 0O} =a?, i=1M, j=LN, M<N

Js?

I- column index, M - number of columns,
j-row index, &V - number of rows.
k- set of multi-indeces of column-vectors.

2. Singular decomposition of (N x M ) -matrix4d  on a set of

orthogonal subspaces of right and left singular vectors of
matrix 4 , ranged with respect to magnitude of eigenvalues of

(M xM)- Gram matrix 4 4 .



Data decomposition algorithm

A=V,U,, V,€ER,, U, ER, (1)
Au=0v= AAv=0’v=Av (2)
Av=0ou= A Au=0"u=lu (3)

1. Solution of the spectral problem (3)
{ui;&. = 01.2}, (ul.T,ua) =0 A, hba=1,M
{hzr2K22,>0. MysM} U, ={u,i=1M,}
2. Calculation of the left singular vectors
Vy=2,AU,, Z, = diag{al., i
(VIVe) =0 a=1.M,, Vy={v, i=1.M,}

3. Calculation of vectors for presentation (1)
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Conclusion

» Algorithms for optimal environmental
forecasting and design are proposed

* The fundamental role of uncertainty 1s
highlighted



Advantage of the approach

* Consistency of all technology elements

* Optimality of numerical schemes based on
discrete-analytical approximations(without
flux-correction procedures )

* Cost-effectiveness of computational
technology
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