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Goal 

•  The main idea of the lecture is in 
presentation  of  a next-generation 
scheme for solution  of the problems of 
atmospheric physics and environment 
protection in which variational principles 
and methods of direct and inverse  
modeling  with data assimilation are used. 



Challenges of environment forecasting: 

• Predictability of climate-environment system? 
 
•  Stability of  climatic system? 
 
•  sensitivity to perturbations of  forcing 

      
 

Features  of environment forecasting: uncertainty  
•   in the  long-term behavior of the climatic system; 
•   in  the character of  influence of man-made factors  
    in the conditions of  changing climate 



	  	  Uncertainty 

	  
•  Discrepancy between models and real  phenomena  
     
•  insufficient accuracy  of numerical schemes and 

algorithms 
 
•  lack  and errors of input data 
 
“If my husband would ever meet a woman on the street 

who looked like the women in his paintings, he 
would fall over in a dead faint.” Mrs.Picasso 



The methodology is based on: 
• control theory, 
• sensitivity theory, 
• risk and vulnerability theory, 

• variational principles in weak formulation, 
• combined use of models and  observed data, 
•  forward and inverse modeling  procedures, 
•  methodology for description of links between 
regional and global processes ( including 
climatic changes) by means of orthogonal 
decomposition of functional spaces for analysis 
of data bases and phase spaces of dynamical 
systems  

CONCEPT  
OF ENVIRONMENTAL MODELING 

 



	  
Basic elements for concept  implementation:	  

	  

• models of processes  
• data and models of measurements 
•   global and local adjoint problems 
•  constraints on parameters and state functions 
•  functionals: objective, quality,  control, restrictions 

etc. 
•  sensitivity relations for target functionals and 

constraints 
•  feedback equations for inverse problems 
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Mathematical model of processes 



Model of atmospheric dynamics	  
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Transport  and  transformation 

of humidity 
	  
( )

v

v
v l f q

q q S S F
t

∂
+ ⋅∇ = − + +

∂
v

1
l

l
l l lT l q

q q q v S F
t z

ρ
ρ

∂ ∂
+ ⋅∇ + = +

∂ ∂
v

1
f

f
f f fT f q

q
q q v S F

t z
ρ

ρ

∂ ∂
+ ⋅∇ + = +

∂ ∂
v

c

c
c c q

q q S F
t

∂
+ ⋅∇ = +

∂
v



( ) i
i i i i i ii

L div ( grad ) ((S ) f (x, t) r ) 0,
t

∂
≡ + − + − − =

∂
uπϕ

ϕ π ϕ µ ϕ π ϕ

Transport and transformation model 
of gas pollutants  and aerosols 

 Operators of transformation 
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Variational form of transport and  
transformation  models  
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Model of observations 

• A set of measured data  mϕ , mΨ  on   m
tD
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Goal functionals
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Quality functionals for data assimilation
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of information  links in the system 



Functionals for generalized description  
of information  links in the system	  

“Measurement”  functionals for receptors
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Variational principle 
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Algorithms for construction of numerical schemes 
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The universal algorithm  
of forward & inverse modeling 
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The main sensitivity relations 

Algorithm for calculation  
 of   sensitivity functions 

Some elements  
of optimal forecasting and design 
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Algorithms for uncertainty calculation 
based on sensitivity analysis and  

data assimilation: 

 
 

in  models of processes 

in  initial state 

in model parameters and sources 
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Fundamental role  
of uncertainty functions	  

•  integration of all technology components 
•  bringing control into the system 
•  regularization of inverse methods 
•  targeting of adaptive  monitoring  
•  cost effective  data assimilation  



Optimal forecasting and design	  

Optimality is meant in the sense that estimations of 
the goal functionals  do not depend on the 
variations : 

•  of the sought  functions in the phase spaces of 
the dynamics of the physical system under study  

•  of the solutions of  corresponding adjoint 
problems that generated by variational principles 

•  of the uncertainty functions of different kinds 
which explicitly included into the extended 
functionals 



Construction of numerical 
approximations	  

•  variational principle 
•  integral identity 
•  splitting  and decomposition methods 
•  finite volumes method 
•  local adjoint problems 
•  analytical solutions 
•  integrating factors 



Idea and basic approximations 
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Fundamental  analytical solutions of local adjoint problems 
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Variational principle and decomposition 
for parallel schemes 
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Scenario approach  for 
environmental needs 

•  Inclusion of climatic data via decomposition of 
phase spaces   on  set of  orthogonal subspaces 
ranged with respect to scales of perturbations  

•  Construction of deterministic and 
deterministic-stochastic scenarios on the basis 
of orthogonal subspaces 

•  Models with leading phase spaces 



Methods of orthogonal decomposition  of 
phase spaces of climate- environment 

information 
•  	  Revealing elements of long-term memory of the 

climatic system 
•  Analysis of variability of multi-component 4D spaces 
•   analysis of climate as  realization of dynamic system 

behavior 
•   Analysis of climatic data in term of orthogonal 

subspaces gives the possibility to define dominant  
patterns in general system and to use them for  
scenario constructions 

	  	  	  	  	  	  	  	  	  
	  



Method of orthogonal data 
decomposition 

 
 
 

    

1. Data base is presented as ( )N M× -matrix
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i- column index, M - number of columns,
j- row index, N - number of rows.
k -  set of multi-indeces  of column-vectors.

2.  Singular  decomposition of ( )N M× -matrix  A  on a set of
orthogonal  subspaces of right and left  singular vectors of
matrix A , ranged with respect to  magnitude of  eigenvalues of
( )M M× - Gram matrix  *A A  .



Data decomposition algorithm 
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Conclusion	  

•  Algorithms for optimal environmental 
 forecasting and  design are proposed 

•  The fundamental role of uncertainty is  
highlighted 

	  



Advantage	  of	  the	  approach	  	  

•  Consistency of all technology elements 
•  Optimality of numerical schemes based on  

discrete-analytical approximations(without 
flux-correction procedures ) 

•  Cost-effectiveness of computational 
technology 
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