Direct and Inverse Relations Having an Impact on Formation of Hydrodynamic Regime and Quality of the Atmosphere

V.Penenko and E.Tsvetova Institute of Computational Mathematics and Mathematical Geophysics SB RAS

Functionals for studies of direct and inverse relations Goal functionals

$$\Phi_k(\mathbf{\varphi}) = \int_{D_t} F_k(\mathbf{\varphi}) \chi_k(\mathbf{x}, t) dD dt = (F_k, \chi_k), \quad k = 1, ..., K$$

 F_k are evaluated functions (differentiable in generilized sense, bounded, satisfying the Lipschitz's conditions),

 $\chi_k dDdt$ are Radon's or Dirac's measures on $D_t, \chi_k \in \mathfrak{T}^*(D_t)$.

Quality functionals for data assimilation $\Phi_k(\varphi) = \int_{D_t} (\Psi - H(\varphi))_m^T M(\Psi - H(\varphi))_m \chi_m(\mathbf{x}, t) dDdt,$ $\chi_m dDdt \text{ Radon's or Dirac's measures } \{\Psi(D_t^m) \Rightarrow \Psi(D_t)\}$

Functionals for studies of direct and inverse relations

"Measurement" functionals for receptors

 $\Phi(\boldsymbol{\varphi}) = \sum_{k=1}^{\infty} \int_{D_{\star}} \left[H(\boldsymbol{\varphi}) \right]_{rk} \delta(\mathbf{x} - \mathbf{x}_{rk}) dD dt,$ $\mathbf{x}_{rk} \in D_t^r$ receptors locations, $\delta(\mathbf{x} - \mathbf{x}_{rk}) dD dt$ Dirac's measure for $D_t^r \Rightarrow D_t$ **Functionals for assessment of distributed restrictions** $\mathbf{\varphi}(\mathbf{x},t) \leq N$, $\mathbf{\vartheta}_k(\mathbf{\varphi}(\mathbf{x},t) \leq 0$ distributive constraints $\Phi_k(\mathbf{\varphi}) = \int_D (\boldsymbol{\vartheta}_k(\mathbf{\varphi}) + |\boldsymbol{\vartheta}_k(\mathbf{\varphi})|) \boldsymbol{\chi}_k(\mathbf{x}, t) dD dt = 0$

 $\chi_k dDdt$ are Radon's or Dirac's measures for constraints on $D_{tc} \subset D_t$, $\chi_k \in \mathfrak{T}^*(D_t)$.

Some elements of optimal forecasting and design

The main sensitivity relations

$$\delta \Phi_k^h(\mathbf{\varphi}) = (\mathbf{\Gamma}_k, \delta \mathbf{Y}) = \frac{\partial}{\partial \alpha} I^h(\mathbf{\varphi}, \mathbf{Y} + \alpha \ \delta \mathbf{Y}, \ \mathbf{\varphi}_k^*) \big|_{\alpha = 0}$$

Algorithm for calculation of sensitivity functions

$$\boldsymbol{\Gamma}_{k} = \frac{\partial}{\partial \delta \mathbf{Y}} \left(\frac{\partial}{\partial \alpha} I^{h}(\boldsymbol{\varphi}, \mathbf{Y} + \alpha \ \delta \mathbf{Y}, \boldsymbol{\varphi}_{k}^{*}) \Big|_{\alpha = 0} \right)$$

 $\Gamma_{k} = \{\Gamma_{ki}\} \text{ are the sensitivity functions} \\ \delta \mathbf{Y} = \{\delta Y_{i}\} \text{ are the parameter variations} \\ k = \overline{1, K}, \ i = \overline{1, N} \end{cases}$

The feed-back relations

$$\begin{split} \frac{dY_{\alpha}}{dt} &= -\eta_{\alpha} \Gamma_{k\alpha}, \quad \alpha = \overline{1, N_{\alpha}}, \quad N_{\alpha} \leq N, \ t_{j-1} \leq t \leq t_{j} \\ \Gamma_{k\alpha} & \text{are the sensitivity functions} \\ Y_{\alpha} & \text{are the parameters to be refined} \\ \eta_{\alpha} & \text{of the quality functional} \end{split}$$

Real time equations of feed-back
relations with *a priori* information
$$\Phi_{k}(\boldsymbol{\varphi}, \mathbf{Y}) = \Phi_{ks}(\boldsymbol{\varphi}) + \Phi_{kp}(\mathbf{Y})$$
$$\Phi_{kp}(\mathbf{Y}) = 0.5 \int_{D_{i}} \left\{ \sum_{i=1}^{N} \left(\gamma_{1} \Gamma_{ip}^{(1)} \left| \operatorname{grad} \left(Y_{i} - Y_{i}^{9} \right) \right|^{2} + \gamma_{2} \Gamma_{ip}^{(2)} \left(Y_{i} - Y_{i}^{9} \right)^{2} \right) \right\} dDdt$$
$$\frac{\partial Y_{i}}{\partial t} = -\kappa \frac{\partial \Phi_{k}(\boldsymbol{\varphi}, \mathbf{Y})}{\partial Y_{i}}, \quad i = \overline{1, N}; \quad \kappa \cong \Phi_{k}(\boldsymbol{\varphi}, \mathbf{Y}) / \left(\frac{\partial \Phi_{k}}{\partial \mathbf{Y}}, \frac{\partial \Phi_{k}}{\partial \mathbf{Y}} \right)$$
$$\frac{\partial Y_{i}}{\partial t} = -\kappa \left\{ \frac{\partial I^{h}(\boldsymbol{\varphi}, \mathbf{Y}, \boldsymbol{\varphi}^{*})}{\partial Y_{i}} - \gamma_{1} \operatorname{div} \Gamma_{ip}^{(1)} \operatorname{grad} \left(Y_{i} - Y_{i}^{9} \right) + \gamma_{2} \Gamma_{ip}^{(2)} \left(Y_{i} - Y_{i}^{9} \right) \right\}$$

 Y'_i - a priori parameter values

- γ_1, γ_2 weight coefficients
- $\Gamma^{(\alpha)}_{ip}$ matrices of scale coefficients and weights

Algorithms of fast data assimilation on the base of variational principle, splitting schemes and uncertainty assessment

- Theoretical base: minimization of the functional of sum measure of uncertainty of the processes' models and the observations' models
- Decomposition of domains and functionals
- Local adjoint problems in the "windows" of assimilation with uncertainty assessment

Real time sequential data assimilation with adjoint problems

Algorithm 1. Uncertainty and adjoint functions taken explicitly

$$\left(E + \Delta t \Lambda_{sj} \right) \varphi^{j} - \left(f_{s}^{j} + \left(M_{2j}^{-1} / \alpha_{2j} \right) \varphi^{*j} \right) \Delta t - \varphi^{j-1/n} = 0$$
$$\left(E + \Delta t \Lambda_{sj}^{*} \right) \varphi^{*j} = \alpha_{1j} \Delta t \left[\frac{\partial H}{\partial \varphi} \right]^{T} M_{1j} (\Psi^{j} - H^{j}(\varphi^{j}))$$

Algorithm 2. Uncertainty and adjoint functions included to general scheme

$$\alpha_{2} \left(\boldsymbol{E} + \Delta \boldsymbol{t} \quad \Lambda_{sj}^{*} \right) \hat{\boldsymbol{M}}_{2} \left(\left(\boldsymbol{E} + \Delta \boldsymbol{t} \quad \Lambda_{sj} \right) \boldsymbol{\varphi}^{j} - \Delta \boldsymbol{t} \mathbf{f}^{j} - \boldsymbol{\varphi}^{j-1/n} \right)$$
$$+ \alpha_{1} \Delta \boldsymbol{t} \left[\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{\varphi}} \right]^{T} \hat{\boldsymbol{M}}_{1} \left(\left(\boldsymbol{H} \boldsymbol{\varphi} \right)_{m}^{j} - \boldsymbol{\Psi}_{m}^{j} \right) = 0$$

 Λ_{sj} - Operator of splitting stage, S- st Additive splitting schemes Para

S- stage number

Parallel algorithms

Variational 4D data assimilation

• Decomposition of domains and functionals

$$D_{t}^{h} = \bigcup_{j=1}^{J-1} D_{tj}^{h}, \quad D_{tj}^{h} = D^{h} \times [t_{j-1}, t_{j}], \quad \Phi^{h}(\varphi, \varphi, \mathbf{Y}, \Psi) = \sum_{j=1}^{J-1} \sum_{s=1}^{p} \Phi^{h}_{js}$$

•Subgrid data structure

$$\left\{ \mathbf{\varphi}_{s}^{j}, \mathbf{\varphi}_{s}^{*j}, \mathbf{r}_{s}^{j}, s = \overline{1, p} \right\} = \bigcup_{s=1}^{p} Q_{s}^{h} \left(D_{t}^{h} \right) \subset Q^{h} \left(D_{t}^{h} \right)$$

Data transfer to subgrid structure

$$\left\{ \boldsymbol{\varphi}_{s}^{j-1} \in Q^{h}\left(D_{t}^{h}\right) \right\} \Longrightarrow \bigcup_{s=1}^{p} \left\{ \boldsymbol{\varphi}_{s}^{j-1} \in Q_{s}^{h}\left(D_{t}^{h}\right) \right\}, \, \boldsymbol{\varphi}_{s}^{j-1} = \boldsymbol{\varphi}^{j-1}, \, s = \overline{1, p}, t = t_{j-1}$$

Parallel algorithm

• Solution of assimilation problem on splitting steps in parallel

$$\begin{split} \Lambda_{s}^{j}\varphi_{s}^{j}-f_{s}^{j}-r_{s}^{j}&=0\\ \Lambda_{s}^{*j}\varphi_{s}^{*j}&=\left[\frac{\partial\Phi_{ks}(\varphi)}{\partial\varphi}+\left(\frac{\partial\left[H(\varphi)\right]_{m}}{\partial\varphi}\right)^{T}M_{1j}(\Psi_{m}-\left[H(\varphi)\right]_{m})\right]_{s}^{j-1}\\ \varphi_{s}^{*j+1}&=0, \ r_{s}^{j}&=\left(M_{2s}^{j}\right)^{-1}\varphi_{s}^{*j}, \ t_{j-1}\leq t\leq t_{j}, \ s=\overline{1,p} \end{split}$$

• Data transfer from subgrid structure onto basic structure

$$\bigcup_{s=1}^{p} \left\{ \boldsymbol{\varphi}_{s}^{j} \in Q_{s}^{h} \left(D_{t}^{h} \right) \right\} \Longrightarrow \left\{ \boldsymbol{\varphi}_{s}^{j} \in Q^{h} \left(D_{t}^{h} \right) \right\}, \quad \boldsymbol{\varphi}^{j} = \frac{1}{p} \sum_{s=1}^{p} \boldsymbol{\varphi}_{s}^{j}, t = t_{j}$$

Climatic hydrodynamic data for scenarios

Fragment of the leading subspace for hgt500.

Inverse problem for risk/vulnerability assessment

Prognostic assessments of climatically stipulated risks/vulnerability areas for receptor region - Ekaterinburg for October.

Inverse problem for risk/vulnerability assessment

Prognostic assessments of climatically stipulated risks/vulnerability areas for Krasnoyarsk as receptor region for October.

Inverse problem for risk/vulnerability assessment

Prognostic assessments of climatically stipulated risks/vulnerability areas for Vladivostok as receptor region for October.

Climatic hydrodynamic data for scenarios

May 15

Volcano Schiveluch (Kamchatka, Russia) eruption 19-21.05.2001. Forward problem. Surface layer aerosol concentrations (<2 mkm)

animation

Volcano Schiveluch eruption 19-21.05.2001

Conclusion

•Methodology and algorithms for studies of direct and feed-back relations are developed

• Methodology is intended for applications to environmental forecasting and design of nature-protection strategies

Acknowledgements

The work is supported by •RFBR Grant 07-05-00673

 Presidium of the Russian Academy of Sciences Program 4

•Department of Mathematical Science of RAS Program 1.3.

Thank you for your time!