Experimental investigation of snow cover regional contamination processes by the south of West Siberia cities

Raputa V.F., Kokovkin V.V., Morozov S.V., Olkin S.E. ICM&MG, NIIC, NIOC SB RAS, SSC VB «Vector», Novosibirsk

The main stages and objectives of investigation:

- Experimental investigation of regional contamination of environs by city areas of Novosibirsk, Kemerovo, Tomsk and Barnaul
- 3. Chemical and analytical investigation
- 5. Models of estimation of aerosol sedimentation fields
- Computational analysis of experimental data (fields reconstruction, estimation of total eruption and componential composition)

I. Experimental investigations

II. Chemical and analytical investigations

Fig. 1. Inorganic (a) and organic (b) components of snow determination schemes

III. Models of estimation of aerosol sedimentation fields

1) Point-type source

$$\frac{-}{q}(r,\varphi) = \frac{M \cdot g(\varphi)}{2\pi \cdot u \cdot h \cdot r},$$
 (1)

$$\overline{p}(r,\varphi) = \frac{\theta \cdot g(\varphi)}{r}, \qquad \theta = \lambda \cdot M / (2\pi \cdot u \cdot h), \qquad (2)$$

$$\overline{p}(r,\varphi) = \frac{\lambda \cdot Mg(\varphi)}{2\pi r} \iint_{\Omega} \frac{B(u',h')}{u' \cdot h'} d\Omega = \frac{\theta' \cdot g(\varphi)}{r}$$
(3)
$$\lambda \cdot M = B(u',h')$$

$$\theta' = \frac{\lambda \cdot M}{2\pi} \iint_{\Omega} \frac{B(u, h)}{u' \cdot h'} d\Omega$$

2) <u>Area-type source</u>

6

$$Q(x,y) = \frac{c}{r} \sum_{n=0}^{\infty} \iint_{S} \alpha^{n} P_{n}(\mu) m(\xi,\eta) g(\xi,\eta,x,y) d\xi d\eta = Q_{1} + Q_{2} + Q_{3} + \dots$$

$$Q_1(x,y) = \frac{c}{r} \iint_S m(\xi,\eta) \left\{ g(\varphi_0) + \left(\frac{\pi}{2} - 1\right) g'(\varphi_0) - g'(\varphi_0) \left(\frac{x}{r^2} \xi + \frac{y}{r^2} \eta\right) \right\} d\xi d\eta = 0$$

<u>Remark</u>

 $g'(\varphi) \approx 0$

IV. Numerical analysis of experimental data

Кальций С-В (Новосибирск)

Бенз(а)пирен С-В (Новосибирск) НГ/Л КΜ

Бенз(а)пирен ССЗ (Новосибирск)

O - basic points, • - points for control

Kemerovo

Сумма ПАУ С-В (Кемерово)

Осадок С-В (Кемерово)

Сульфаты С-В (Кемерово)

Barnaul

Бенз(а)пирен С-В (Барнаул)

Scheme of stationary meteo-posts location in the city of Comparison of average logarithms of PAH concentration (ng/L) for **Barnaul** meteo-posts and the city trace

Tomsk

Seversk (Tomsk region)

Measured and reconstructed according to model activity and quantity of sediments of ²³⁴U and ²³⁸U in the Noth-East direction from SChC

Conclusion

- Experimental and chemical-analytical studies of polycomponent contamination of snow cover in vicinities of large city areas of West Siberia south were organized. The low-parametric models of reconstructions of the long regional aerosol fallouts from area sources were worked out.
- Using numerical methods for experimental data analysis, the quantitative regularities of regional trace contamination fields of dust, heavy metals, PAH, ionic composition are obtained.
- It was shown that snow cover is a reliable quantitative indicator of atmosphere contamination by verious organic substances, macro- and microcomponents. Snow control is an economical method for estimation of long-term contamination of city territory and its environs.

Thanks for Your attention