Radiative transfer models in the internetaccessible information-computational system "Atmospheric radiation"

Firsov K.M.¹, Chesnokova T.Yu.², Voronina Yu.V.², Kozodoeva E.V.²

1-Volgograd State University, 100, Av. Universitesky, 400062, Volgograd, Russia, <u>fkm@iao.ru</u>

2-Institute of Atmospheric Optics SB RAS, 1, Academician Zuev square, 634021 Tomsk, Russia, <u>ches@iao.ru</u>, <u>yulia@iao.ru</u>, <u>klen@iao.ru</u>

Codes for modeling of the shortwave atmospheric radiative transfer

RAPRAD [Kato et al], RRTM_SW [Clough et al,], MODTRAN4.9 [Anderson et al,], SMARTS[Gueymard C.], SBDART[Ricchiazzi et al], SBMOD [Yang et al]

Max. difference between calculated downward SW fluxes >19 W/m²

[Michalsky J.J., Anderson G.P., Barnard J et al.// J. Geophys. Res. 2006. V. 111.]

Spectroscopic databanks of absorption lines of the atmospheric gases

HITRAN [http://cfa-www.harvard.edu/hitran/]
 GEISA [Jacquinet-Husson et al.]
 BT2 (H₂O lines) [Barber R.J., Tennyson J., et al]
 PS (H₂O lines) [H. Partridge and D.W. Schwenke]

Internet-accessible system «Atmospheric Radiation» in the IAO site: <u>http://atrad.atmos.iao.ru/</u>

Atmospheric ra	adiation	Фирсов Константин Михайлович 🌿 📔							
Measurements 1	(NM Model	IAO radiative model	Frolkis Model	Results	Info				
Rus Eng		aaa » dd 🛛 📷	<u>i</u> 🖿 🔲		🎄 🕖				
Portal	🖉 🗐 Atmos	Atmospheric Radiation							
Aerosol				<i>c</i> 1					
Radiation	Atmosph	eric Radiation site is u	used for calculation	ons of radiation	fluxes in the				
Spectroscopy	the radiati	on reaime		nor gas constitu	ient's enect on				
Chemistry									
Climate	Complete	functionality of the s	ite is provided or	nly for authoriz	zed users. For				
About Portal	registratio	n or authorization you h	have to click on the pictogram 🕹. User can						
Middleware	additional	Information in 🖲.							

INTAS grant 00-189, RFBR grant Nº04-07-90123

Servers: •Institute of Atmospheric Optics SB RAS (Tomsk) http:// atrad.atmos.iao.ru •Ural State University (Ekaterinburg) http://atmos.physics.usu.ru •Volgograd State University (Volgograd) •http://atmos.volsu.ru

Longwave radiative transfer

$$F^{\uparrow}(z) = \int_{0}^{\infty} \pi B_{\nu}(z_{0}) T_{\nu}^{f}(z, z_{0}) d\nu + \int_{0}^{\infty} \int_{0}^{z} \pi B_{\nu}(z') \frac{dT_{\nu}^{f}(z, z')}{dz'} dz' d\nu$$
$$F^{\downarrow}(z) = \int_{0}^{\infty} \int_{z}^{\infty} \pi B_{\nu}(z') \frac{dT_{\nu}^{f}(z, z')}{dz'} dz' d\nu \qquad \tau(z, z') = \int_{z}^{z'} K(\nu, p(h), t(h)) \rho(h) dh$$

F(z) – radiative flux at the altitude *z*; $\tau(v,z,z')$ - optical depth at wavenumber v ; ρ (*h*) – gas concentration; p(h) -pressure, t(h)- temperature, μ - zenith angle cosinus

Shortwave radiative transfer

$$\mu \frac{\partial I(\tau,\mu,\varphi)}{\partial \tau} = I(\tau,\mu,\varphi) - \overline{\omega}(\tau)/4\pi \int_{0}^{2\pi} d\varphi' \int_{0}^{1} d\mu' f(\tau,\mu,\varphi,\mu',\varphi') I(\tau,\mu',\varphi')$$

$$I = \sum_{i=1}^{N} C_i I_i$$

Frolkis Model

two stream approximation for 17 spectral intervals in 4,43-1000 mkm (10-2260 cm⁻¹) spectral region aerosols and H_2O , CO_2 , O_3 , CH_4 , N_2O , O_2 absorption 3-parametric approximation of Curtis-Godson for atmospheric pressure and

temperature inhomogeneity

INM Model

- H_2O , CO_2 , O_3 , CH_4 , N_2O , O_2 absorption, aerosol, clouds
- Longwave (thermal) spectrum is divided into 10 spectral bands
- shortwave (solar) spectrum 18 bands
- height of the upper boundary layer 50 km,
- the number of the atmosphere vertical levels -20-30
- Parameterization of H_2O , CO_2 absorption by k-distribution method,
- ozone by 2-parametric approximation of Curtis-Godson

IAO radiative model in the internet system «Atmospheric Radiation»

Interface of the Internet-accessible system «Atmospheric Radiation»

		Rus Eng		aaa » dd				
		AFGL model	🖉 🖾 Air Forc	e Geophy	sical Lab	oratory mo	del (AFGL	.)
Atmospheric radiation / Initial conditions -	- Microsoft Internet Explorer	Up B Meteo model			AI	GL model		
Фаил Правка <u>В</u> ид Переход Изоранн → → ③ Назад ▼ Вперед ▼ Останови Обнов ть Адрес ၍ http://atrad.atmos.iao.ru/nkk/2/init_conc	ное <u>с</u> правка) 🔏 🐼 🐼 😵 зить Домой Поиск Избранно Журнал Каналы Е е			Latitude C Tropics Mid C Polar Season C Summe	The gas ⊮ H ₂ O ⊮ CO ⊮ SO ₂ r	ses to be take 지 CO ₂ 지 지 CH ₄ 지 지 O ₂ 지	n into accou O ₃ 국 N ₂ O O ₂ 국 NO NH ₃ 국 HNC	int
Rus Eng	aaa » dd 🔀 🗟 🖻 目 Initial conditions			○ Winter	□ ОН □ НІ □ НОС □ Н ₂ О ₂	$\Box HF \Box$ $\Box CIO \Box$ $I \Box N_2 \Box$ $_2 \Box C_2 H_2 \Box$	HCI ☐ HBr OCs ☐ H₂C HCN ☐ CH ₃ C ₆ H ₆ ☐ PH ₃	o Cl
 Initial conditions Detector polar angles Filter function Atmosphere parameters Aerosol parameters Calculation Results 	Calculation parametersNumber of atmospheric layers (1-50)Number of Gauss quadratures for calculation effective absorption coefficients (3-30)Surface albedo (0-1)Sun zenith angle (0-90 deg)Sun azimuth angle (0-180 deg)	45 of 5 0.6 30		erto-retarderte		Ok	Treusuries	
	Detector zenith angle (0-180 deg) Number of azimuth angles (1-3)	120 Rus Eng 120 Intensity and fluxe 3 Up	s 💽 🖾 In	aaa » tensity and	dd 😼 📸			
	 	Initial conditions Azimuth angle of detector 45.00000 9 Atmosphere parameters Intensity (W/(m ² *srad)) 8.3135311E-03 4.00					135.0000 7692183E-0:	
INT	 Calculation Results Intensity an 	Opt d fluxes	ical depth	Direct downward	Diffuse downward	Diffuse upward 7.6435857E-	Net Flux	
		юна Интер	atmo: At su	sphere top ^{0.} rface 0.	1519623 1141818	0.0000000E+00 2.9467013E-02	02 8.6190321E- 02	0.3114011 4.1094013 02

Spectroscopic databases of absorption lines parameters

Spectral	Number of H ₂ O (16) lines in the databank								
interval, cm ⁻¹	BT2	PS	HITRAN 2004	HITRAN 2008					
9000-10000	20825195	10675	554	613					
10000-11000	17774321	18654	2742	2540					
11000-12000	15010019	10862	711	1151					
12000-13000	12588904	12866	1031	1614					
13000-14000	10480937	15622	1720	1903					
14000-15000	8588504	12284	1528	1244					
15000-16000	6977227	12835	1516	1647					
16000-17000	5606762	11689	1118	1248					
17000-18000	4423476	12502	1061	1160					
18000-19000	3430768	11053	712	757					
19000-20000	2613454	9647	704	767					
9000-20000	108319567	138689	13397	14644					

HITRAN Database Format

Format for HITRAN Parameters, 1986 though 2001																
Parameter	Molecule number	lsotopologue number	Transition frequency (cm ⁻¹)	Line Intensity	IR ²	Air- broadened width	Self- broadened width	lower- state Energy	Temperature dependence (of air width)	Pressure shift	upper vibrational quanta	lower vibrational quanta	upper local quanta	lower local quanta	Error codes	Reference codes
Eield Length	2	1	12	10	10	5	5	10	4	8	3	3	9	9	3	6

					New	/ Forma	t for HIT	RAN	Paramete	rs, Edi	tions a	fter 200	1/			[]			
Parameter	Molecule number	lsotopologue number	Transition frequency (cm ⁻¹)	Line Intensity	Einstein- A coefficient	Air- broadened width	Self- broadened width	lower- state Energy	Temperature dependence (of air width)	Pressure shift	upper vibrationa quanta	lower vibrational quanta	upper local quanta	local quanta	code	r Referen s code	nce for s line- mixing	upper statistical weight	lower statistical weight
Field Length	2	1	12	10	10	5	5	10	4	8	15	15	15	15	6	12	1	7	7
FORTRAN descriptor	12	11	F12.6	1PE10.3	E10.3	0PF5.4	F5.4	1PF10.4	0PF4.2	F8.6	A15	A15	A15	A15	611	612	A1	F7.1	F7.1

Calculation of effective absorption coefficients

H2O continuum models

-RSB (Robertc et al, 1976) -ARF (Arefiev, 1990) -CKD1 (Clough et al, 1989) -CKD2.4 (Mlawer et al, 1998) -MTCKD (Clough et al, 2003, 2007)

Measurements	MODIS	INM Model	IAO radiative model	Frolkis Model	Results	Info				
Rus Eng			hhh » h1 👸 👸 🗎 🗉]		🎪 I 🥝				
Initial conditions	토 🖉 In	itial condition	s							
Up										
■ Calculation of e	effective	Calculation parameters								
Intensity and f	iux	Spectral inter	rval for IR fluxes (0-3000 cm	-1)	0	- 500				
		Calculate wit	h H2O continuum absorption		N					
□ IR fluxes calcul	lation	Model of H2O	continuum		CKD1					
 Initial conditi Meteorologica 	ions al model	Spectral rang	e for H2O continuum (0-3000	0 cm^{-1}) for models RS	B and ARF CKD1 CKD2.4					
■ Results		8		Ok	MI_CKD RSB ARF					

INTAS grant 00-189, RFBR grant №04-07-90123, 07-07-00269

Longwave fluxes on different atmospheric heights with H_2O , CO_2 , O_3 , N_2O , CH_4 absorption and different H_2O continuum models in 0-3000 cm⁻¹ spectral region. MLS

Ζ, км		H ₂ O	continuum	models							
	CKD2.4	RSB	ARF	CKD1	MT_CKD						
		Upward fluxes, W/m ²									
5	347.342	348.581	348.918	346.753	347.160						
10	298.688	301.030	301.590	297.269	298.465						
90	281.265	284.035	284.603	279.814	281.173						
		Dov	wnward fluxe	es, W/m ²							
0	350.505	349.317	348.573	350.110	350.918						
5	161.377	155.689	155.331	164.078	162.105						
10	53.193	50.888	50.867	54.305	52.776						

Difference 4-5 W/m² (downward fluxes)

Algorithm to calculate the broadband atmospheric radiative transfer (IAO radiative model)

 Q_i is the monochromatic radiative characteristic (brightness, flux) at the cumulative wavelength g_i (*i*=1,...,*N*; *N*~5-10)

Calculation stages:

 $I_{\Delta\lambda} = \sum_{i} C_i Q_i$

- 1. Altitude profile of absorption coefficients $K(\lambda, h)$ by line-by-line method from HITRAN with high resolution;
- 2. Effective absorption coefficients $K(g_i, h)$ at the cumulative wavelengths g_i taking into account Sun radiation $S(\lambda)$ and filter function $F(\lambda)$

3. Solving the radiative transfer equation at each wavelength g_i by DISORT

Longwave fluxes in 0-3000 cm⁻¹ spectral region for CCMVAL meteomodel

Meteomodel	Z, km		Jpward flux , W	//m ²	Downward flux, W/m ²				
		LBL [Fomin*]	k-distribution	Difference,%	LBL [Fomin*]	k-distribution	Difference,%		
A_1	100	176.8	177.66	-0,486	0	0	0		
	0	212.4	212.45	-0,024	140.7	141.82	-0,796		
A_2	100	220.7	221.40	-0,317	0	0	0		
	0	298.9	299.14	-0,080	214.01	214.67	-0,308		
A ₃	100	278.9	279.69	-0,283	0	0	0		
	0	456.88	456.78	0,022	402.96	404.71	-0,435		
B ₁	100	176.62	177.44	-0,464	0	0	0		
	0	212.47	212.45	0,009	141.20	142.23	-0,729		
B ₂	100	220.34	221.06	-0,327	0	0	0		
	0	298.95	299.14	-0,064	214.48	215.08	-0,280		
B ₃	100	278.37	279.18	-0,291	0	0	0		
\setminus	0	456.88	456.78	0,022	403.12	404.85	-0,429		
A1- A3: C *Fomin B.A	A1- A3: CO ₂ -338 ppm (1986), B1- B3: CO ₂ -380 ppm (2005) *Fomin B.A. Falaleeva V.A. Atmospheric and Oceanic Optics, 2009								

Difference <0,5% (upward fluxes) <1% (downward fluxes) А₁, В₁. 80, 185° СШ А₂, В₂: 49,906° СШ А₃, В₃: 0,56° СШ

Shortwave downward and upward fluxes

MLS, 10000-10500 cm⁻¹, A_s=1, SZA=30°

Height,km	Upward fluxes,	W/m²		Downward fluxes, W/m ²						
	Monte Carlo, LBL [Fomin]	DISORT, LBL	DISORT, KD	Monte Carlo, LBL [Fomin]	DISORT, LBL	DISORT, KD				
Clouds Scl, R _{ef} = 5.4 μm, τ _{cloud} = 2.81; layer 12.4–13 km										
0	23.20	23.01	22.75	23.20	23.01	22.75				
1	21.53	21.25	20.95	25.14	24.99	24.81				
2	20.79	20.48	20.18	26.81	26.67	26.62				
5	20.18	19.86	19.54	29.79	29.61	29.85				
10	20.13	19.79	19.47	30.97	30.92	29.93				
100	20.47	20.07	19.47	31.44	31.36	31.74				
	Clouds	Cb, R _{ef} = 30 j	Jm, T _{cloud} =	9.7; layer 1.8–2	2 km					
0	21.42	21.74	21.51	21.42	21.74	21.51				
1	20.02	20.24	19.99	23.14	23.55	23.38				
2	20.53	20.68	20.60	26.98	26.91	27.04				
5	19.22	19.48	19.31	30.15	29.93	30.38				
10	19.10	19.34	19.16	31.38	31.25	30.67				
100	19.10	19.34	19.16	31.45	31.36	31.74				

Upward fluxes at the atmosphere top, W/m²

Spectral in	nterval, mkm	line-by-line	k-distribution			
0.87-1		20.81	20.56			
1-1.1		19.67	19.95			
1.28-1.53		3.89	3.88			
1.64-2.13		3.56	3.52			
1.64-2.13	Cb	7.08	7.36			
1.64-2.13	Scl	14.4	14.47			

Scattering and absorption by aerosol, cloud and Rayleigh, absorption by all gases SZA=30° MLS.

DATA

RRC Kurchatov Institute

Optical characteristics of drop clouds and aerosol models.

Benchmark calculations of downward and upward radiation for testing of atmospheric radiative transfer models

IAO SB RAS, VoISU

MODIS satellite data of optical characteristics of clouds and aerosol for northern hemisphere

USU

A priori information of vertical profiles of H₂O, HDO, O₃, CH₄, CO₂ and temperature

Thank you for attention!