Turbulent closures in a onedimensional lakes model

Bogomolov V.^{1,2}, Stepanenko V.^{2,3}.

¹Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Science

² Research Computing Center, Moscow State University
³ Faculty of Geography, Moscow State University
⁴ Institute of Geography, Russian Academy of Sciences
⁵ Institute of Numerical Mathematics, Russian Academy of Sciences

The Kato-Phillips experiment for the *k*-ε model

Temperature field in the Kato-Phillips experiments of the Gr.1 group with the LAKE model using the $k - \varepsilon$ closure: a) with C_e and $C_{e,T}$ as empirical constants; b) with d C_e and $C_{e,T}$ as functions of Canuto's stability ; c) with C_e and $C_{e,T}$ as Galperin stability functions

Mean rms deviation for the group of experiments Gr.1.k, where node 1 along the abscissa corresponds to the standard deviation between the experiments of Gr.1.1 and Gr. 1.2.

The Kato-Phillips experiment for the *k*-ε model

Temperature field in the Kato-Phillips experiments of the Gr.2 group with the LAKE model using the $k - \varepsilon$ closure: a) with C_e and $C_{e,T}$ as empirical constants; b) with d C_e and $C_{e,T}$ as functions of Canuto's stability ; c) with C_e and $C_{e,T}$ as Galperin stability functions

Mean rms deviation for the group by the experiment Gr.2. *k*, where node 1 along the abscissa corresponds to the standard deviation between the experiments Gr.2.1 and Gr.2.2.

Experiment with real atmospheric forcing for LAKE model with Hendersson – Sellers parametrization and $k - \epsilon$ model.

Temperature distribution by depth and time for Lake Kuivajärvi: a) LAKE model with Hendersson-Sellers parametrization; b) measurement data; c) LAKE with closure of the the $k - \varepsilon$ empirical Kolmogorov constants d) LAKE with closure the $k - \varepsilon$ with Canuto stability functions; e) LAKE with closure k- ε with Galperin stability functions.

Results

Our results demonstrate that $k - \varepsilon$ closure allows for a smooth solution at timesteps $\Delta t < 450$ s, while the convergence of numerical scheme is attained at $\Delta t < 100$ s. In contrast, convergence of a lake model scheme using Hendersson-Sellers diffusivity is achieved if Δt < 3600 s, resulting in drastic reduction of the lake model runtime compared to using $k - \varepsilon$ parameterization. At the same time, the correctness of simulation results obtained with both schemes was very similar.

Thank you for attention!