

Методика разделения суммарной радиации на составляющие ее прямую и рассеянную Technique for separation of total irradiance into direct and diffuse components

Зуев С. В. zuev@imces.ru Институт мониторинга климатических и экологических систем СО РАН, 634055, г. Томск, пр. Академический, д. 10/3

Актинометрические наблюдения

Актинометрические наблюдения имеют целью получение данных о радиационном режиме земной поверхности, необходимых для научных целей и практического использования в различных отраслях народного хозяйства. Прозрачность (мутность) атмосферы, суммы солнечной

радиации и др.

99 % солнечной энергии $\lambda = 0,17 \div 4,0$ мкм

Основные измеряемые элементы приходящей к земной поверхности солнечной радиации:

 $Q = S \cdot \sin h + D$

Измерение основных актинометрических величин

https://rratlas.energy.gov.sa

 $Q = S \cdot \sin h + D$

$Q = S \cdot \sin h + D$

 $Q = S \cdot \sin h + D.$

Одно уравнение с двумя неизвестными.

Требуется дополнительная информация для разделения Q на S u D (напр., определение D периодическим затенением пиранометра (S = 0)).

$$\begin{cases} Q = S \cdot \sin h + D, \\ Q = D \end{cases}$$

Sunshine pyranometer SPN-1. Delta-T Devices Ltd $Q = S \cdot \sin h + D$

$$\begin{cases} Q_{max} = S \cdot \sin h + D - \Delta D, \\ Q_{mix} = D - \Delta D, \\ \Delta D = \frac{1}{2} \end{cases}$$

$$S \cdot \sin h = Q_{max} - Q_{min},$$

$$D = 2 \cdot Q_{min},$$

$$Q = Q_{max} + Q_{min},$$

$$T_{SS} = t(S \ge Threshold)$$

$$\Delta D = \frac{1}{2}D \implies \frac{1}{n}D, \ n \ge 2$$

Многоэлементный измеритель ИМКЭС СО РАН

2 пиранометра М-80М, регистратор.

$$\frac{1}{n} = \frac{1}{6}$$
 Для июня $h_{max} = 57^{\circ}$

$$\begin{cases} Q_{max} = S \cdot \sin h + D - \Delta D, \\ Q_{mix} = D - \Delta D, \\ \Delta D = \frac{1}{n}, \ n \ge 2 \end{cases}$$

$$S \cdot \sin h = Q_{max} - Q_{min},$$

$$D = \frac{n}{n-1} \cdot Q_{min},$$
$$Q = Q_{max} + \frac{1}{n-1} \cdot Q_{min}$$

Многоэлементный измеритель ИМКЭС СО РАН

2 пиранометра М-80М, регистратор.

n

Многоэлементный измеритель ИМКЭС СО РАН

Цель работы

Создание методики разделения суммарной радиации $(Q = S \cdot \sin h + D)$, измеряемой с помощью незатененного пиранометра, на составляющие ее прямую *S'* и рассеянную *D* радиацию (в первую очередь для ясного неба и при кучевой облачности).

Дополнительная информация — отношение справочных значений S_0^*/D_0^* и использование непросвечивающих облаков в качестве естественного затеняющего экрана для получения уравнения Q = D.

Исходные данные

1. Измеренные значения суммарной радиации *Q*.

2. Средние многолетние значения суммарной Q_0^* , прямой S_0^* и рассеянной D_0^* радиации при ясном небе для данной местности (справочные) при высоте Солнца $\geq 30^\circ$ [Научно-прикладной справочник по климату СССР.1993].

Допущения и ограничения методики

- 1. Симметричный суточный ход солнечной радиации относительно полудня.
- 2. Прозрачность атмосферы не меняется в течение светлого времени суток.
- 3. Наличие участков ясного неба (20 мин. и более) на суточном ходе измеренной суммарной радиации *Q*.

Суммарная радиация. Пасмурно

Суммарная радиация. Ясно

Суммарная радиация. Си

Этапы методики

1. Моделирование суточного хода суммарной радиации при ясном небе Q_0 .

2. Моделирование суточного хода рассеянной радиации при ясном небе *D*₀.

3. Определение значений рассеянной D_Q и прямой S_Q радиации.

1. Модель суточного хода суммарной радиации при ясном небе Q_0

 $Q_0^* = 8,846 \cdot 10^{-9} \cdot x^4 - 2,498 \cdot 10^{-5} \cdot x^3 + 0,021 \cdot x^2 - 4,377 \cdot x + 165$

1. Модель суточного хода суммарной радиации при ясном небе Q_0

 $Q_0^* = 8,846 \cdot 10^{-9} \cdot x^4 - 2,498 \cdot 10^{-5} \cdot x^3 + 0,021 \cdot x^2 - 4,377 \cdot x + 165$

Matthew J. Reno, at al. 2012. Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis

ENVIROMIS-2018

10-minute periods of clear sky ²¹

1. Модель суточного хода суммарной радиации при ясном небе Q_0

Загрузить документ		Время	Q,гВт/м2	Nº	LST	HRA	sinH	arcsin H	Градус Солнца над у.з.	Q при ясном небе	Настройки День по счету (d): 134 Сохранить
Сохранить файл в формате .csv	►	00:01:00	0	1	0,02	-179,7	-0,2584	-0,261	-14,954		Широта: 56,48 все
		00:02:00	0	2	0.03	-179,55	-0,2584	-0,261	-14,954		Скрытые столбцы
		00:03:00	0	3	0,05	-179,25	-0,2584	-0,261	-14,954		🔲 Q, гВт/м2 🔲 Градус Солнца над у.з.
Сохранить Файл в Формате xlsx		00:04:00	0	4	0,07	-178,95	-0,2583	-0,261	-14,954		№ П Q при ясном небе
		00:05:00	0	5	0.08	-178,8	-0,2583	-0,261	-14,954		LST CQ
		00:06:00	0	6	0,1	-178,5	-0,2583	-0,261	-14,954		F HRA VQ
		00:07:00	0	7	0,12	-178,2	-0,2582	-0,261	-14,954		🔽 sinH 🗌 Генетич-я классификаци
Построить график		00:08:00	0	8	0,13	-178,05	-0,2581	-0,261	-14,954		🔽 arcsinH 🗖 Состояние неба
		00:09:00	0	9	0,15	-177,75	-0,258	-0,261	-14,954		Кучево-обр. Волнисто-обр. Слоисто-обр.
		00:10:00	0	10	0,17	-177,45	-0,2579	-0,261	-14,954		
Отобразить кучевую облачность		00:11:00	0	11	0,18	-177,3	-0,2579	-0,261	-14,954		
		00:12:00	0	12	0,2	-177	-0,2577	-0,261	-14,954		
		00-13-00	n	12	0.22	-176 7	-0.2576	-0 261	-14 954		<u> </u>

Карабецкий Михаил (ТТИТ). 2018. Программный детектор кучевой облачности и ясного неба

ENVIROMIS-2018

1. Модель суточного хода суммарной радиации при ясном небе Q_0

 $\sigma^*_{AB} = 15 \text{ BT/M2}$ n = 150 $\sigma^*_{CD} = 26 \text{ BT/M2}$ n = 60

 $Q_0^* = 8,846 \cdot 10^{-9} \cdot x^4 - 2,498 \cdot 10^{-5} \cdot x^3 + 0,021 \cdot x^2 - 4,377 \cdot x + 165$

 $\sigma_{AB} = 4 \text{ BT/M2}$ n = 150 $\sigma_{CD} = 3 \text{ BT/M2}$ n = 60

 $Q_0 = 9,554 \cdot 10^{-9} \cdot x^4 - 2,716 \cdot 10^{-5} \cdot x^3 + 0,023 \cdot x^2 - 5,043 \cdot x + 233$

ENVIROMIS-2018

 $D_0^* = -1,236 \cdot 10^{-9} \cdot x^4 + 3,57 \cdot 10^{-6} \cdot x^3 - 0,004 \cdot x^2 + 2,329 \cdot x - 364$

Величина отношения прямой и рассеянной радиации при отсутствии облаков для любых значений *S* практически линейно зависит от прозрачности атмосферы и ее можно считать величиной постоянной [Сивков. Методы расчета характеристик солнечной радиации (с. 130)]. Следовательно, для средней (справочной) прозрачности атмосферы можно принять

$$\frac{S_0^*}{D_0^*} = r_h$$

Тогда, для величин изменения с учетом противоположности изменения прямой и рассеянной радиации

$$\frac{\Delta S'_0}{\Delta D_0} = -r_h \cdot \sin h$$

$$\Delta D_0 = -\frac{\Delta Q_0}{r_h \cdot \sin h + 1}$$

$$\Delta Q_0 = \Delta S'_0 - \Delta D_0$$

 $D_0 = -6,629 \cdot 10^{-10} \cdot x^4 + 1,877 \cdot 10^{-6} \cdot x^3 - 0,002 \cdot x^2 + 1,136 \cdot x - 175$

$$D_Q = Q - (Q_0 - D_0) \cdot p,$$

p – коэффициент пропускания S облачным слоем покрывающим диск Солнца.

p = 1 -открытое Солнце;

p = 0 – Солнце закрыто непросвечивающими облаками.

Для просвечивающих облаков, учитывая, что они оказывают слабое влияние на величину *S и D*, коэффициент пропускания можно определять приближенно по формуле

$$p \approx \frac{Q}{Q_0}$$

Для полупросвечивающих облаков необходимо инструментальное определение коэффициента *р*. Небольшие по времени пропуски в ряде значений *D*_Q можно заполнять с помощью какого-либо метода интерполяции, учитывая, что рассеянная радиация, в отличие от прямой, не может изменяться скачкообразно.

Без заполнения пропусков: $n = 152, \sigma = 14$ $Q > Q_0$

Заполнение пропусков линейной интерполяцией: $n = 488, \sigma = 23$

$$S_Q = \frac{Q - D_Q}{\sin h}$$

Коэффициент прозрачности атмосферы

Фактор мутности $T = 11,5 \cdot \lg \frac{S_0}{S_{30^\circ}}$

Продолжительность солнечного сияния

Заключение

Точность предлагаемой методики в первую очередь зависит от точности построения модели суммарной радиации при ясном небе, для чего на суточном ходе должны присутствовать участки ясного неба. Наиболее хорошие результаты методика показывает при кучевой и кучево-дождевой облачности, когда коэффициент *р* в большинстве случаев принимает значения 0 или 1 и которые достаточно просто определить. Для просвечивающих или полупросвечивающих облаков, которыми в большинстве случаев являются облаками верхнего и среднего ярусов, коэффициент пропускания предпочтительно определять инструментально, напр., с помощью лидарного зондирования.

Работа выполняется в рамках проекта фундаментальных исследований СО РАН IX.138.2.5 "Научно-методические основы создания и использования технологий и информационно-измерительных комплексов для дистанционного мониторинга нижнего слоя атмосферы".

Методика разделения суммарной радиации на составляющие ее прямую и рассеянную Technique for separation of total irradiance into direct and diffuse components

Зуев С. В. zuev@imces.ru Институт мониторинга климатических и экологических систем СО РАН, 634055, г. Томск, пр. Академический, д. 10/3