

INSTITUTE OF MONITORING OF CLIMATIC AND ECOLOGICAL SYSTEMS

SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES

Aircraft Icing Nowcasting Technique

D. P. Mordus, V. V. Zuev, A. V. Pavlinskii dariymordus@gmail.com

Tomsk, 2020 IL-18 in Ulyanovsk December 26, 1960 Il-14 near Penza October 30, 1960

Li-2 near Kolpny January 14, 1946

Aircraft icing caused 3% of all aviation accidents in Russia and the CIS

ATR 72 near Tyumer April 2, 2012

An-24 near Saratov December 1, 1971

Aircraft icing forecasting methods

Schultz and Politovich model $-16^{\circ}C \le t(z) \le 0^{\circ}C$ $R_{H}(z) \ge 63\%$

<mark>Godske Formula</mark> t(z) ≤ -8 (t(z)-t_d(z))

t (z) is the temperature at height z, td (z) is the dew point at height z, RH (z) is the relative humidity at height z, t (z) -td (z) is the saturation temperature above the ice, H is the cloud ceiling height

Prognosis of significant weather charts (SIGWX)

Method for remote detection of aircraft icing <u>spatial areas</u>

Calculation of the relative humidity profile

$$R_{H}(z) = \begin{cases} R_{H,0} + \frac{100 - R_{H,0}}{H} z, & z \le H \\ 100 & z > H \end{cases}$$

Calculation

of the dew point profile

$$t_{d}(z) = \frac{B_{1}\left[\ln\left(\frac{R_{H}(z)}{100}\right) + \frac{A_{1}t(z)}{B_{1} + t(z)}\right]}{A_{1} - \ln\left(\frac{R_{H}(z)}{100}\right) - \frac{A_{1}t(z)}{B_{1} + t(z)}}$$

Aerodrome MeteoInformation System (AMIS RF)

t (z) is the temperature at height z,

td (z) is the dew point at height z,

RH (z) is the relative humidity at height z,

t (z) -td (z) is the saturation temperature above the ice,

H is the cloud ceiling height,

R_{H,0} - is the relative humidity at ground level,

 $A_1 = 17.625^{\circ}C, B_1 = 243.04^{\circ}C.$

Fest facilities location

Meteorological Temperature Profiler MTP-5

Height range: 0 - 1000 m Measurement period: 5 - 10 minutes

> Complex radio engineering aerodrome meteorological station (CRAMS)

St. Petersburg International airport Pulkovo

Санкт-Петербург

17

овский район

КМ

A-118 KAA

airport Pulkovo

RMS-1 MTP-5

ФРУНЗЕНСКИЙ

Заневка

Кудрово

КАД

A-118

Новосаратовка

Ме Петро-Сл

Water vapor radiometer RMS-1

Measurement period: 5 - 10 minutes

Distribution of air temperature at heights of 0 to1 km at the time of aircraft icing reported

November 2018 to March 2020

Air temperature distribution

The most icing cases were observed at temperatures from +2 to -13 °C. The maximum number of icing cases was registered at temperatures from -1 to -6 °C.

Total vapor content at the moment of aircraft icing reported

November 2018 to March 2020 Pulkovo airfield area

The most of icing cases were observed at a total vapor content of 0.4 to 1.2 g/cm² with the maximum number of cases at Q = $0.6 - 1 \text{ g/cm}^2$ (75% of all cases).

Method for remote detection of possible aircraft icing areas based on real-time radiometry

Icing is considered possible in the areas where the total vapor content exceeds the level is within range

 $0.4 \text{ g/cm}^2 \le Q \le 1.15 \text{ g/cm}^2$,

and the air temperature is within range

 $-13 \ ^{\circ}C \le t(z) \le +2 \ ^{\circ}C,$

where:

Q is the value of the total vapor content corresponding to the maximum value of the histogram, t (z) is the actual value of the temperature profile at the height z.

Forecast of possible aircraft icing for St. Petersburg International Airport for February 20, 2019

Vertical zones of possible aircraft icing calculated without (a) and including (b) the ceiling height data

Conclusion:

The probability of aircraft icing in the observation area can be determined using the ranges of meteorological parameters — air temperature and total vapor content.

The use of actual, not reconstructed or calculated meteorological indicators increases the accuracy of icing forecast.

THANK YOU FOR ATTENTION!

1333333

=I-XI